

Design Example Report

Title	20 W Single Output, Power Factor Corrected LED Driver Using TOP247YN					
Specification	85 VAC – 277 VAC Input 12 V (12 V - 14 V LED Array), 1.67 A Output					
Application	LED Driver					
Author	Power Integrations Applications Department					
Document Number	DER-168					
Date	December 18, 2007					
Revision 1.1						

Summary and Features

- Single stage PFC based constant voltage, constant current output power supply
- Universal input range allows single design to be used worldwide
- Meets ENERGY STAR minimum PF requirement of 0.9 for commercial environment (0.9 worst case at 277 VAC)
- Meets harmonic content limits as specified in IEC 61000-3-2 for Class C
- Meets EN55015 B conducted EMI limits with >8 dBµV margin
- Fully fault protected
 - Auto-restart withstands shorted output indefinitely
 - Integrated thermal shutdown protects the entire supply
 - Operates with no-load indefinitely
- Full load: 6 rows of 4 diodes part# LW W5SG/GYHY-5K8L-Z

The products and applications illustrated herein (including circuits external to the products and transformer construction) may be covered by one or more U.S. and foreign patents or potentially by pending U.S. and foreign patent applications assigned to Power Integrations. A complete list of Power Integrations' patents may be found at <u>www.powerint.com</u>.

Power Integrations 5245 Hellyer Avenue, San Jose, CA 95138 USA. Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com

Table of Contents

1 Introduction	
2 Power Supply Specification	1
3 Schematic	5
4 PCB Layout6	3
5 Circuit Description	7
5.1 Input EMI Filtering	
5.2 TOPSwitch Primary	7
5.3 Output Rectification	3
5.4 Output Feedback	3
5.4.1 Constant Voltage Operation)
5.4.2 Constant Current Operation)
5.5 Soft-Start)
6 Bill of Materials	l
7 Transformer Specification14	1
7.1 Electrical Diagram14	1
7.2 Electrical Specifications14	1
7.3 Materials	1
7.4 Transformer Build Diagram15	5
7.5 Transformer Construction15	5
8 Transformer Spreadsheets	3
9 Performance Data)
9.1 Efficiency19)
9.2 Line Regulation)
9.3 Harmonic Content)
9.4 Harmonic Content in Percentage of Fundamental	
9.5 Power Factor Vs Line Voltage at Full Load21	l
10 Thermal Performance	2
11 Waveforms23	
11.1 Drain Voltage and Current, Normal Operation	3
11.2 Output Voltage Start-up Profile24	1
11.3 Drain Voltage and Current Start-up Profile	1
11.4 Output Ripple Measurements25	
11.4.1 Ripple Measurement Technique25	5
11.4.2 Measurement Results	
12 Surge Test	7
12.1 Surge Test Results with 1.2/50uS Waveform	7
12.2 Surge Test Results with 0.5uS-100KHz Ring-Waveform27	7
13 Conducted EMI	3
14 Revision History)

Important Note:

Although this board is designed to satisfy safety isolation requirements, the engineering prototype has not been agency approved. Therefore, all testing should be performed using an isolation transformer to provide the AC input to the prototype board.

1 Introduction

The document presents a power supply design to be used in LED Lighting applications. The design input voltage range is 85 to 277 VAC.

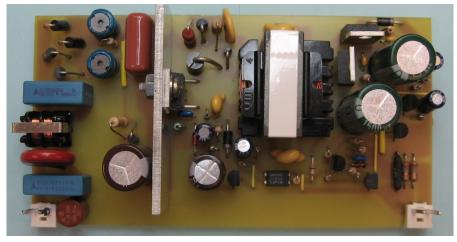


Figure 1 – Populated Circuit Board Photograph.

2 Power Supply Specification

Description	Symbol	Min	Тур	Max	Units	Comment
Input Voltage Frequency	V _{IN} f _{LINE}	85 47	50/60	277 64	VAC Hz	2 Wire – no P.E.
Output Output Voltage 1 Output Ripple Voltage 1 Output Current 1 Total Output Power	V _{out1} V _{ripple1} I _{out1}		12 1.67	18	V mV A	20 MHz Bandwidth
Continuous Output Power	P _{OUT}			20	W	
Environmental Conducted EMI Safety		Desigr	ned to mee	N55015B et IEC950,	UL1950	
Surge		1			kV	1.2/50 μs Surge, IEC 61000-4-5, Series Impedance: Common Mode: 12 Ω
Surge		0.5			kV	1.2/50 μs Surge, IEC 61000-4-5, Series Impedance: Differential Mode: 2 Ω
Ring-wave		2.5			kV	0.5 μs-100KHz Ring-wave IEEE C.62.41-1991, Class A, Differential and Common Mode
Ambient Temperature	Т _{АМВ}	0		50	°C	Free Convection, Sea Level

3 Schematic

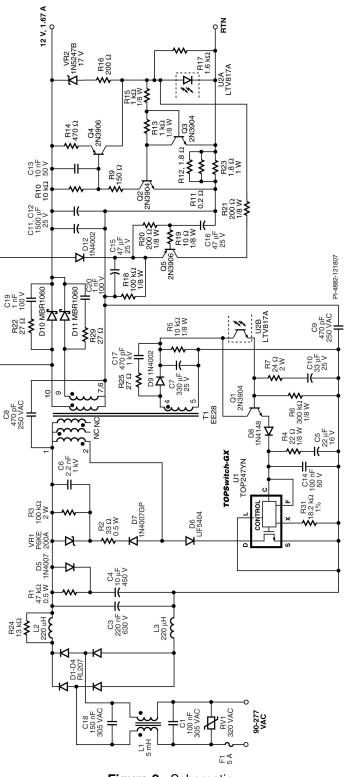


Figure 2 – Schematic.

4 PCB Layout

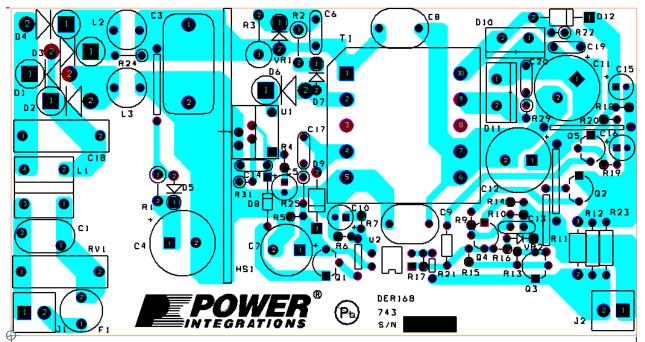


Figure 3 – PCB Layout.

5 Circuit Description

This design uses a discontinuous mode flyback power supply fed from an input stage with minimal capacitance. With a fixed duty cycle over an AC line cycle, this allows the peak drain current envelope, and therefore the input current, to follow the input AC voltage waveform to give high power factor and low harmonic content. Although this simple configuration gives both output regulation and power factor correction in a single stage converter, it does require higher peak drain currents compared to a standard power supply with substantiation input capacitance.

Detailed descriptions of each function block are given below.

5.1 Input EMI Filtering

In addition to the standard filtering (C1 and L1), L2 and L3 were added to provide increased differential mode filtering and surge withstand capability. This was required due to the small value of input capacitance (C3) and associated increase in switching currents seen by the AC input.

Common mode filtering is provided by L1, C8 and C9. Together with transformer E-Shields (that reduce the source of EMI common mode currents), this allows the design to pass EN55015 B with good margin.

5.2 TOPSwitch Primary

On application of the AC input, the combination of the in-rush current to charge C1, C18 and C3, together with the inductance in the AC line, causes a voltage spike that appears across C3. In a design with a large input capacitance, this voltage is negligible; however, here the voltage spike is sufficiently large to exceed the BV_{DSS} rating of the MOSFET within TOP247YN. To prevent this, capacitor C4 and D5 limit the maximum voltage while R1 is the bleeder to discharge this capacitor on AC removal.

The discontinuous mode of operation needed for high power factor increases the primary RMS current for a given output power. Selecting a larger TOPSwitch device (TOP247YN) than needed for power delivery offsets increases RMS current by reducing the R_{DSON} conduction losses and giving higher efficiency and reduced dissipation. This was critical in this design in order to meet the maximum operating ambient of 50 °C.

As the DC input voltage across C3 falls to zero during normal operation, D6 was added in series with the drain to prevent the DRAIN ringing below SOURCE and reverse biasing the device. As reverse biasing of the device is not permitted, this diode must be used.

To provide high power factor using a single stage flyback converter, it is necessary to maintain the duty cycle of the MOSFET constant over a single AC line cycle (low bandwidth).

As the control characteristic of TOPSwitch-GX is CONTROL (C) pin current to duty cycle (of the internal MOSFET), this requires that the current into the C pin must be held constant. The simplest way to achieve this would be to use a very large value of CONTROL pin capacitance (C5). However, a large value of C5 causes a large startup time and also a large startup overshoot.

To overcome this difficulty, an emitter follower (Q1) was used as an impedance transformer with a capacitor C10 in its base. Looking into the emitter of Q1, C10 appears to be larger (C10 x Q1_{hfe}), and R6 appears to be smaller (R6 / Q1_{hfe}). Capacitor C10, together with R6, sets the dominant pole of the circuit at approximately 0.01 Hz. Resistor R7 provides loop compensation, creating a zero at approximately 44 Hz, which gives additional phase starting at 4 Hz to improve phase margin at gain crossover. Gain crossover occurred in this design at approximately 30 Hz. Higher bandwidth is undesirable as this degrades power factor by increasing the third harmonic content in the input current waveform. Diode D8 prevents reverse current through Q1 during startup.

Feedback is provided from the secondary via optocoupler U2B, which in turn modulates the base voltage of Q1 and changes the current into the CONTROL pin.

The primary clamp circuit is formed by D7, R2, R3, C6 and VR1. During normal operation, R3 and C6 set the clamping voltage. Zener VR1 sets a defined upper clamping voltage and conducts only during startup and load transients. A standard recovery, glass passivated diode, D7, has a reverse recovery time of 2 μ s and helps recover some of the leakage energy, thereby improving efficiency. Note that the glass passivated version of the 1N4007 must be used to prevent excessive diode reverse current, unless the FR106 (500 ns) diode is substituted. Resistor R2 damps out high frequency ringing and helps reduce EMI.

5.3 Output Rectification

To reduce dissipation and increase efficiency, two output diodes were used (D10 and D11). These are connected to separate secondary windings to improve current sharing between the two diodes. Filtering is provided by C11 and C12. Relatively large values are necessary to reduce line frequency ripple that is present in the output due to the low loop bandwidth required for high power factor. These values may be reduced depending on the acceptable current ripple through the LED load.

Snubbers (R22, C19 and R29, C20) across D10 and D11 were added to reduce EMI.

5.4 Output Feedback

Output feedback is split into two functional blocks: constant voltage operation and constant current operation.

5.4.1 Constant Voltage Operation

Voltage feedback is provided by VR2 and optocoupler U2A. Once the output exceeds the voltage defined by the forward drop of U2A, VR2 and R16, current will flow through the optocoupler and provide feedback to the primary. As the line and load change, the magnitude of current will change to reduce or increase the MOSFET duty cycle so as to maintain output regulation. Resistor R16 sets the loop gain in the constant voltage region.

The nominal output voltage regulation is set at 18 V, which is above the expected LED load voltage when operated at its rated current. Under normal operation, the supply will operate in constant current mode, and voltage feedback is used only when the output is unloaded.

5.4.2 Constant Current Operation

Transistor Q3 and the forward drop of the LED in U2A are used to create a bias voltage on the base on Q2. The additional drop across R11 needed to turn on Q2 is equal to the difference between the bias voltage and the V_{BE} of Q2 (~0.5 V). Once Q2 turns on, Q4 is also turned on, supplying current through U2A and providing feedback. Resistor R9 limits the base current from Q4, and R14 sets the gain of the CC loop. Resistor R10 keeps Q4 off until Q2 is on, while C13 provides loop compensation. This arrangement gave an average output current in CC operation of 1.67 A.

5.5 Soft-Start

The very low loop bandwidth presents a problem at startup. Once the loop closes and feedback is provided via U2A, it takes significant time for the loop to respond and therefore allows a significant output overshoot. This is due to the need for C10 to charge above 5.8 V before current will be supplied into the CONTROL pin of U1.

The standard solution to output overshoot is to provide a soft-finish circuit. Typically this consists of a capacitor that allows current to flow in the feedback loop before the output has reached regulation. Here such a passive approach is not practical because of the size of capacitor that would be required.

To overcome this, the circuit formed around Q5 is used to overdrive the feedback loop during startup. Using an element with gain (Q5) allows high enough feedback current to pre-charge C10 before the output reaches regulation.

A separate auxiliary supply is created by D12 and C15 so that the voltage across C15 rises faster than the main output across C11 and C12. While C16 charges, Q5 is on, supplying current to charge C10 via the optocoupler, with resistor R21 limiting the maximum current. Once the voltage across C16 reaches $V_{O}-V_{BE(Q5)}$, Q5 turns off and the circuit becomes inactive. At power down, C16 is discharged via R18, resetting the circuit for the next power-up. The time constant of C16 and R18 appears very long; however, in

practice, C10 also takes a significant time to discharge on power down, and even momentary AC drop outs do not result in any output overshoot.

6 Bill of Materials

ltem	Qtv	Part Ref	Value	Description	Mfg Part	Mfg		
item				-	Number	-		
1	1	C1	100 nF	100 nF, 305 VAC, X2	B32922A2104M	Epcos		
2	1	C3	220 nF	220 nF, 630 V, Film	ECQ-E6224KF	Panasonic		
3	1	C4	10 μF	10 μF, 450 V, Electrolytic, (12.5 x 20)	EKMG451ELL10 0MK20S	United Chemi- Com		
4	1	C5	22 μF	22 μF, 16 V, Electrolytic, Gen. Purpose, (5 x 11)	ECA1CM220	Panasonic		
5	1	C6	2.2 nF	2.2 nF, 1 kV, Disc Ceramic	FF	NIC Components Corp		
6	1	C7	330 μF	330 μF, 25 V, Electrolytic, Very Low ESR, 53 Ω, (10 x 12.5)	EKZE250ELL331 MJC5S	Nippon Chemi- Con		
7	2	C8 C9	470 pF	470 pF, 250 Vac, Thru Hole, Ceramic Y-Capacitor	ECK-ATS471MB	Panasonic		
8	1	C10	33 μF	33 uF, 16 V, Electrolytic, Gen. Purpose, (5 x 11)	ECA1CM330	Panasonic		
9	2	C11 C12	1500 uF	1500 μF, 25 V, Electrolytic, Very Low ESR, 18 Ω, (12.5 x 25)	EKZE250ELL152 MK25S	Nippon Chemi- Con		
10	1	C13	10 nF	10 nF, 50 V, Ceramic, Z5U	B37982N5103M 000	Epcos		
11	1	C14	100 nF	100 nF, 50 V, Ceramic, X7R - Don't use for bypass cap. Use Z5U dielectric type - cheaper	B37987F5104K0 00	Epcos		
12	2	C15 C16	47 μF	47 μF, 25 V, Electrolytic, Very Low ESR, 300 Ω, (5 x 11)	EKZE250ELL470 ME11D	Nippon Chemi- Con		
13	1	C17	470 pF	470 pF, 1 kV, Disc Ceramic	NCD471K1KVY5 FF	NIC Components Corp		
14	1	C18	150 nF	150 nF, 305 VAC, X2	B32922A2154M	Epcos		
15	2	C19 C20	1 nF	1 nF, 100 V, Ceramic, COG	B37979G1102J0 00	Epcos		
16	4	D1 D2 D3 D4	RL207	1000 V, 2 A, Rectifier, DO-15	RL207	Rectron		
17	1	D5	1N4007	1000 V, 1 A, Rectifier, DO-41	1N4007-E3/54	Vishay		
18	1	D6	UF5404	400 V, 3 A, Ultrafast Recovery, 75 ns, DO-201AD	UF5404-E3	Vishay		
19	1	D7	1N4007GP	1000 V, 1 A, Rectifier, Glass Passivated, 2 us, DO-41	1N4007GP	Vishay		
20	1	D8	1N4148	75 V, 300 mA, Fast Switching, DO-35	1N4148	Vishay		
21	2	D9 D12	1N4002	100 V, 1 A, Rectifier, DO-41 1N4002		Vishay		
22	2	D10 D11	MBR1060	60 V, 10 A, Schottky, TO-220AC	MBR1060	Vishay		
23	1	F1	5 A	5 A, 250 V, Slow, TR5	3721500041	Wickman		

24	1	HS1	HEATSINK	HEATSINK, Alum, TO-220 2 hole, 2 mtg pins		Power Integrations
25	2	J1 J2	CON2	2 Position (1 x 2) header, 0.156 pitch, Vertical	26-48-1021	Molex
26	1	L1	5 mH	5 mH, 0.3 A, Common Mode Choke	SU9V-03050	Tokin
27	2	L2 L3	220 μH	220 μH, 0.68 A, 9 x 11.5 mm	SBC3-221-681	Tokin
28	3	Q1 Q2 Q3	2N3904	NPN, Small Signal BJT, 40 V, 0.2 A, TO-92	2N3904RLRAG	On Semiconductor
29	2	Q4 Q5	2N3906	PNP, Small Signal BJT, 40 V, 0.2 A, TO-92	2N3906	Fairchild
30	1	R1	47 k	47 k, 5%, 1/2 W, Carbon Film	CFR-50JB-47K	Yageo
31	1	R2	33	33 R, 5%, 1/2 W, Carbon Film	CFR-50JB-33R	Yageo
32	1	R3	100 k	100 k, 5%, 2 W, Metal Oxide	RSF200JB-100K	Yageo
33	1	R4	22	22 R, 5%, 1/8 W, Carbon Film	CFR-12JB-22R	Yageo
34	2	R5 R10	10 k	10 k, 5%, 1/8 W, Carbon Film	CFR-12JB-10K	Yageo
35	1	R6	300 k	300 k, 5%, 1/8 W, Carbon Film	CFR-12JB-300K	Yageo
36	1	R7	24	24 R, 5%, 1/8 W, Carbon Film	CFR-12JB-24R	Yageo
37	1	R9	150	150 R, 5%, 1/8 W, Carbon Film	CFR-12JB-150R	Yageo
38	1	R11	0.20	0.20 R, 1%, 1 W	2306 327 52007	Phonex
39	2	R12 R23	1.8	1.8 R, 5%, 1/4 W, Carbon Film	CFR-25JB-1R8	Yageo
40	2	R13 R15	1 k	1 k, 5%, 1/8 W, Carbon Film	CFR-12JB-1K0	Yageo
41	1	R14	470	470 R, 5%, 1/8 W, Carbon Film	CFR-12JB-470R	Yageo
42	3	R16 R20 R21	200	200 R, 5%, 1/8 W, Carbon Film CFR-12JB-		Yageo
43	1	R17	1.6 k	1.6 k, 5%, 1/8 W, Carbon Film CFR-12JB-1K6		Yageo
44	1	R18	100 k	100 k, 5%, 1/8 W, Carbon Film CFR-12JB-100K		Yageo
45	1	R19	10	10 R, 5%, 1/8 W, Carbon Film	Yageo	
46	3	R22 R25 R29	27	27 R, 5%, 1/4 W, Carbon Film	CFR-25JB-27R	Yageo

47	1	R24	13 k	13 k, 5%, 1/4 W, Carbon Film	CFR-25JB-13K	Yageo
48	1	R31	18.2 k	18.2 k, 1%, 1/4 W, Metal Film	MFR-25FBF- 18K2	Yageo
49	1	RV1	320 Vac	320V, 84J, 15.5 mm, RADIAL	S14K320	Epcos
50	1	T1	EE28	Bobbin, EE28. Vertical, Extended creepage, 10 pins	YW-490-00B	Yih-Hwa Enterprises
51	1	U1	TOP247YN	TOPSwitch-GX, TOP247YN, TO220- 7C	TOP247YN	Power Integrations
52	1	U2	LTV817A	Opto coupler, 35 V, CTR 80-160%, 4-DIP	LTV-817A	Liteon
53	1	VR1	P6KE200A	200 V, 600 W, 5%, TVS, DO204AC (DO-15)	P6KE200ARLG	OnSemi
54	1	VR2	1N5247B	17 V, 5%, 500 mW, DO-35	1N5247B	Microsemi

7 Transformer Specification

7.1 Electrical Diagram

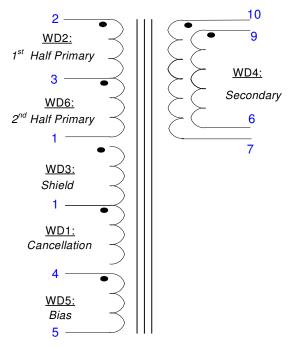
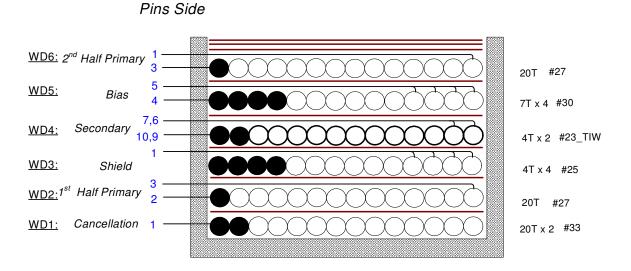


Figure 4 – Transformer Electrical Diagram.

7.2 Electrical Specifications


Electrical Strength	60 second, 60 Hz, from Pins 1-5 to Pins 6-10	3000 VAC
Primary Inductance	Pins 1-2, all other windings open, measured at 100 kHz	724 μH, -0/+10%
Resonant Frequency	Pins 1-2, all other windings open	855 kHz (Min.)
Primary Leakage Inductance	Pins 1-2, with Pins 6-7-8-9-10 shorted, measured at 100 kHz.	10 μH (Max.)

7.3 Materials

Item	Description
[1]	Core: EE28 PC40 or equivalent gapped for 452 nH/T ²
[2]	Bobbin: Vertical EE28 10 pins, safety rated
[3]	Magnet Wire: 33AWG
[4]	Magnet Wire: 27AWG
[5]	Magnet Wire: 25AWG
[6]	Magnet Wire: 30AWG
[7]	Triple Insulated Wire: 23AWG
[8]	Tape: 9.6mm
[9]	Varnish

7.4 Transformer Build Diagram

Figure 5 – Transformer Build Diagram.

7.5 Transformer Construction

Bobbin Preparation	Place bobbin, item [2], on the winding machine with pins side oriented to		
•	the left hand side.		
WD1 Core Cancellation	Start at pin 1, wind from left to right 20 bifilar turns of item [3] in a uniform,		
WD1 Core Cancellation	tightly wound layer. Cut finish lead at the end of the winding.		
Таре	Use 1 layer of tape, item [8], to hold the winding.		
WD2 Einst Half Drimony	Start at pin 2, wind from left to right 20 turns of item [4] in a uniform, tightly		
WD2 First Half Primary	wound layer. Finish at pin 3.		
Таре	Use 1 layer of tape, item [8], to hold the winding.		
	Using 4 parallel wires of item [5], attach starting lead temporarily to pin 3.		
WD2 Chield	Wind 4 quad-filar turns from left to right in a uniform, tightly layer. Finish at		
WD3 Shield	pin 1. Disconnect the starting wire form pin 3 and cut it at the starting of		
	the winding.		
Таре	Use 1 layer of tape, item [8], to hold the winding.		
WD4 Cocondom	Start at pins 10 and 9 using 2 wires of item [7]. Wind 4 turns of parallel		
WD4 Secondary	wires from left to right in a single layer. Finish at pins 7 and 6 respectively.		
Таре	Use 1 layer of tape, item [8], to hold the winding.		
WD5 Bias	Start at pin 4, wind 7 quad-filar turns of item [6] from left to right in a single		
	and tight layer. Finish at pin 5.		
WDC Cocord Half Driver	Start at pin 3, wind from left to right 20 turns of item [4] in a uniform, tightly		
WD6 Second Half Primary.	wound layer. Finish at pin 1.		
Tape Use 3 layer of tape, item [8].			
Einel Accombly	Assemble and secure core halves with bobbin. Varnish impregnate item		
Final Assembly	[9].		

18-Dec-07

8 Transformer Spreadsheets

ACDC_TOPSwitchGX_ 043007; Rev.2.15; Copyright Power Integrations 2007	INPUT	INFO	OUTPUT	UNIT	TOP_GX_FX_043007: TOPSwitch-GX/FX Continuous/Discontinuous Flyback Transformer Design Spreadsheet
ENTER APPLICATION VARIABLES				Design with 85-277VAC EE28 HF	
VACMIN	85			Volts	Minimum AC Input Voltage
VACMAX	277			Volts	Maximum AC Input Voltage
fL	50			Hertz	AC Mains Frequency
VO	12.00			Volts	Output Voltage (main)
РО	33.00			Watts	Output Power
n	0.80				Efficiency Estimate
Z	0.50				Loss Allocation Factor
VB	20			Volts	Bias Voltage
tC	3.00			mSeconds	Bridge Rectifier Conduction Time Estimate
CIN	99999.00			uFarads	Input Filter Capacitor
ENTER TOPSWITCH-G	X VARIABL	.ES			
TOP-GX	TOP247			Universal	115 Doubled/230V
			Power		
Chosen Device		TOP247	Out	125W	165W External llimit reduction factor (KI=1.0 for
кі	0.44				default ILIMIT, KI <1.0 for lower ILIMIT)
ILIMITMIN			1.426	Amps	Use 1% resistor in setting external ILIMIT
ILIMITMAX			1.742	Amps	Use 1% resistor in setting external ILIMIT
Frequency (F)=132kHz, (H)=66kHz	Н				Half (H) frequency option - 66kHz
fS			66000	Hertz	TOPSwitch-GX Switching Frequency: Choose between 132 kHz and 66 kHz
fSmin			61500	Llortz	TOPSwitch-GX Minimum Switching
fSmax			61500 70500	Hertz Hertz	Frequency TOPSwitch-GX Maximum Switching Frequency
VOR	125.00			Volts	Reflected Output Voltage
VDS	10.00			Volts	TOPSwitch On-state Drain to Source Voltage
VD	0.50			Volts	Output Winding Diode Forward Voltage Drop
VDB	0.70			Volts	Bias Winding Diode Forward Voltage Drop
КР	1.00				Ripple to Peak Current Ratio (0.4 < KRP <1.0 : 1.0< KDP<6.0)
ENTER TRANSFORME	R CORE/CO	ONSTRUC		RIABLES	
Core Type	EI28*				
Core		El28		P/N:	PC40EI28-Z
Bobbin		El28_BO		P/N:	BE-28-1110CPL

		BBIN			
AE			0.86	cm^2	Core Effective Cross Sectional Area
LE			4.82	cm	Core Effective Path Length
AL			4300	nH/T^2	Ungapped Core Effective Inductance
BW			9.6	mm	Bobbin Physical Winding Width
М	0.00			mm	Safety Margin Width (Half the Primary to Secondary Creepage Distance)
L	2.00				Number of Primary Layers
NS	4				Number of Secondary Turns
DC INPUT VOLTAGE P	ARAMETE	RS			
VMIN			120	Volts	Minimum DC Input Voltage
VMAX			392	Volts	Maximum DC Input Voltage
CURRENT WAVEFORM	I SHAPE P	ARAMETE	RS		
DMAX			0.53		Maximum Duty Cycle
IAVG			0.34	Amps	Average Primary Current
IP			1.29	Amps	Peak Primary Current
IR			1.29	Amps	Primary Ripple Current
IRMS			0.54	Amps	Primary RMS Current
TRANSFORMER PRIM	ARY DESIG		IETERS		
LP			724	uHenries	Primary Inductance
 NP			40		Primary Winding Number of Turns
NB			7		Bias Winding Number of Turns
ALG			452	nH/T^2	Gapped Core Effective Inductance
BM			2717	Gauss	Maximum Flux Density at PO, VMIN (BM<3000)
BP			3666	Gauss	Peak Flux Density (BP<4200)
BAC			1359	Gauss	AC Flux Density for Core Loss Curves (0.5 X Peak to Peak)
ur			1918		Relative Permeability of Ungapped Core
LG			0.21	mm	Gap Length (Lg > 0.1 mm)
BWE			19.2	mm	Effective Bobbin Width
OD			0.48	mm	Maximum Primary Wire Diameter including insulation
INS			0.06	mm	Estimated Total Insulation Thickness (= 2 * film thickness)
DIA			0.42	mm	Bare Conductor Diameter
AWG			26	AWG	Primary Wire Gauge (Rounded to next smaller standard AWG value)
СМ			256	Cmils	Bare Conductor Effective Area in Circular mils
СМА			471	Cmils/Amp	Primary Winding Current Capacity (200 < CMA < 500)

TRANSFORMER SECONDARY DE	SIGN PARAMETER	S (SINGLE	OUTPUT EQUIVALENT)
Lumped parameters			
ISP	12.92	Amps	Peak Secondary Current
ISRMS	5.10	Amps	Secondary RMS Current
ю	2.75	Amps	Power Supply Output Current
IRIPPLE	4.30	Amps	Output Capacitor RMS Ripple Current
CMS	1021	Cmils	Secondary Bare Conductor minimum circular mils
AWGS	20	AWG	Secondary Wire Gauge (Rounded Up to Next Larger Standard AWG Value)
DIAS	0.81	mm	Secondary Minimum Bare Conductor Diameter
ODS	2.40	mm	Secondary Maximum Outside Diameter for Triple Insulated Wire
INSS	0.79	mm	Maximum Secondary Insulation Wall Thickness
VOLTAGE STRESS PARAMETER	S		
VDRAIN	674	Volts	Maximum Drain Voltage Estimate (Includes Effect of Leakage Inductance)
PIVS	51	Volts	Output Rectifier Maximum Peak Inverse Voltage
PIVB	85	Volts	Bias Rectifier Maximum Peak Inverse Voltage

*Note EI and EE core are equivalent – here an EE28 core was used but EI entered into design spreadsheet.

The standard flyback transformer design approach was modified due to the minimal input capacitance (for high p.f.). A very high value of capacitance was entered for C_{IN} so that the transformer is designed at the peak of the AC line voltage (at low line). The output power entered was increased from the 20 W specified to 33 W. This was compensated for the undelivery of output power as the AC input voltage waveform is low or zero.

9 Performance Data

All measurements performed at room temperature, 60 Hz input frequency.

9.1 Efficiency

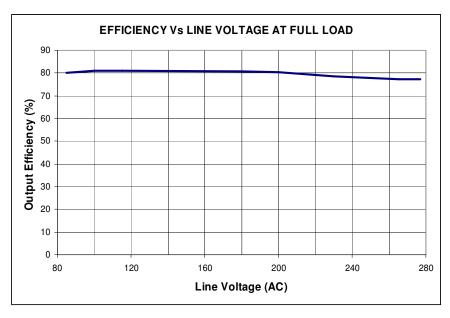
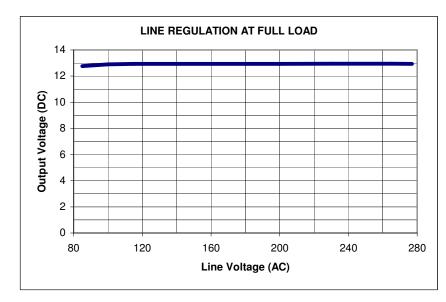



Figure 6 – Efficiency vs Input Voltage, Room Temperature, 60 Hz.

9.2 Line Regulation

Figure 7 – Line Regulation, Room Temperature, Full Load.

9.3 Harmonic Content

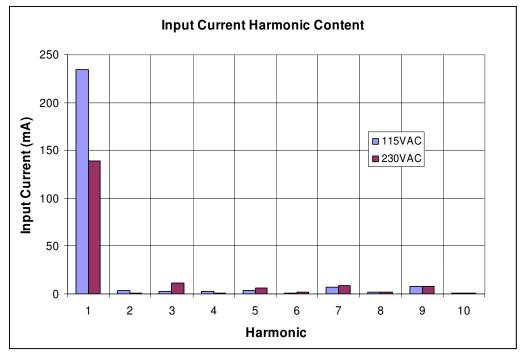


Figure 8 – Input Current Harmonic Content at Full Load.

9.4	Harmonic	Content in	Percentage	of Fundamental
-----	----------	------------	------------	----------------

Harmonic	115 AC lin(mA)	% of Fundame ntal	Maximum % Allowed By IEC 61000-3-2		% of Fundamen tal	Maximum % Allowed By IEC 61000-3-2. Class C
1	234			139		
2	3.2	1.37	2	0.9	0.65	2
3	2.9	1.24	29.7	11	7.91	28.0
4	2.6	1.11		0.6	0.43	
5	3.6	1.54	10	6.1	4.39	10
6	0.8	0.34		1.5	1.08	
7	6.9	2.95	7	8.5	6.12	7
8	1.6	0.68		1.6	1.15	
9	7.6	3.25	5	7.8	5.61	5
10	1.3	0.56		0.9	0.65	

Figure 9 – Harmonic Content in Percentage of Fundamental and IEC 61000-3-2 Limits for C Class Equipment. **NOTE:** Third Harmonic Spec Follows the Formula: <u>30* PFC</u>. (Power Factor at 115/230 VAC).

9.5 Power Factor Vs Line Voltage at Full Load

Vin	PF
85	0.970
115	0.990
230	0.934
277	0.902

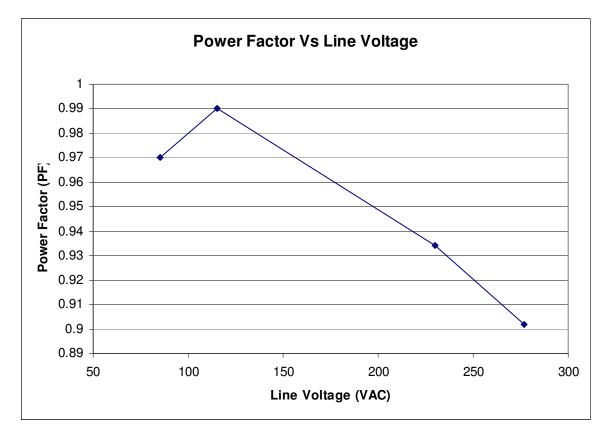
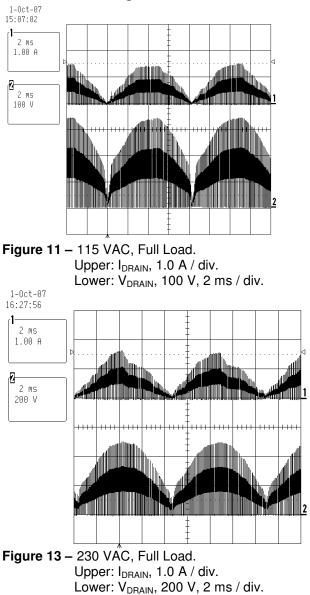


Figure 10 – Power Factor (PF) vs Input Line Voltage (VAC).

10 Thermal Performance

Thermal data were taken with unit inside a closed cardboard box at room temperature.


ltem	Temperature (°C)		
nem	85 VAC	277 VAC	
Ambient Outside the Box	25	25	
TOPSWITCH (U1)	42	53	
Transformer (T1)	46	52	
Output Rectifiers (D10, D11)	58	60	

1-0ct-07

11 Waveforms

11.1 Drain Voltage and Current, Normal Operation

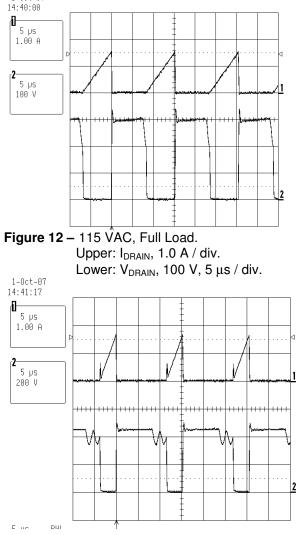
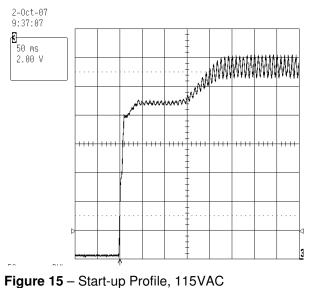



Figure 14 – 230 VAC, Full Load. Upper: I_{DRAIN}, 1.0 A / div. Lower: V_{DRAIN} , 200 V, 5 μ s / div.

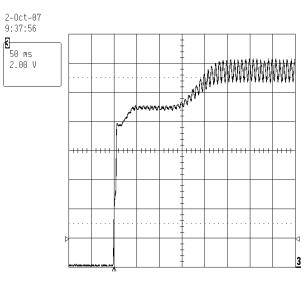
11.2 Output Voltage Start-up Profile

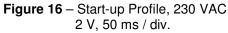
2 V, 50 ms / div.

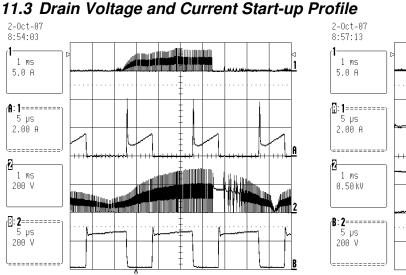
2-0ct-07

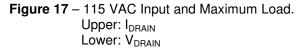
8:54:03

1 ms


5.0 A


Α:1==== 5 μs 2.00 A -----


200 V


Ð 1 ms

1

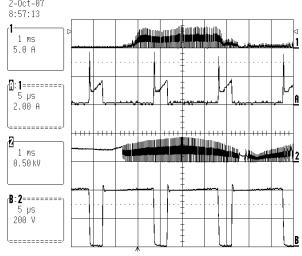


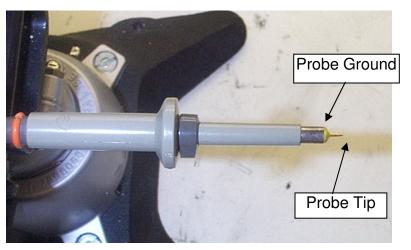
Figure 18 - 230 VAC Input and Maximum Load. Upper: IDRAIN Lower: VDRAIN

11.4 Output Ripple Measurements

11.4.1 Ripple Measurement Technique

For DC output ripple measurements, a modified oscilloscope test probe must be utilized in order to reduce spurious signals due to pickup. Details of the probe modification are provided in the figures below.

The 4987BA probe adapter is affixed with two capacitors tied in parallel across the probe tip. The capacitors include one (1) 0.1 μ F/50 V ceramic type and one (1) 1.0 μ F/50 V aluminum electrolytic. The aluminum electrolytic type capacitor is polarized, so proper polarity across DC outputs must be maintained (see below).



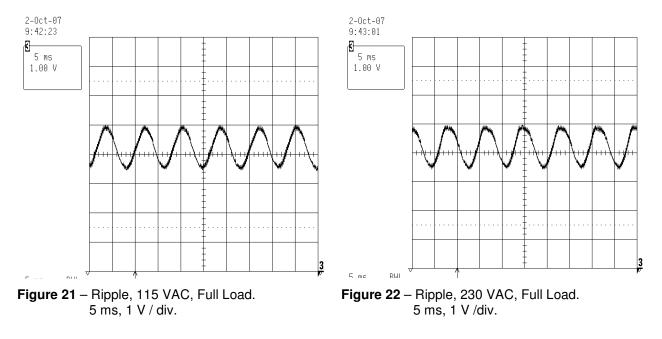

Figure 19 – Oscilloscope Probe Prepared for Ripple Measurement. (End Cap and Ground Lead Removed).

Figure 20 – Oscilloscope Probe with Probe Master (<u>www.probemaster.com</u>) 4987A BNC Adapter. (Modified with wires for ripple measurement, and two parallel decoupling capacitors added).

11.4.2 Measurement Results

AC coupled measurements showing 1.5 $V_{\text{P-P}}$ output ripple at 120 $H_{\text{Z}}.$

12 Surge Test

Surge Level (V)	Input Voltage (VAC)	Injection Location	Injection Phase (°)	Number Of Surges	Test Result (Pass/Fail)
+500	230	L to N	90	10	Pass
-500	230	L to N	90	10	Pass
+1000	230	L and N to G	90	10	Pass
-1000	230	L and N to G	90	10	Pass

12.1 Surge Test Results with 1.2/50us Waveform

12.2 Surge Test Results with 0.5us-100 kHz Ring-Waveform

Surge Level (V)	Input Voltage (VAC)	Injection Location	Injection Phase (°)	Number Of Surges	Test Result (Pass/Fail)
+2500	230	L to N	90	10	Pass
-2500	230	L to N	90	10	Pass
+2500	230	L and N to G	90	10	Pass
-2500	230	L and N to G	90	10	Pass

13 Conducted EMI

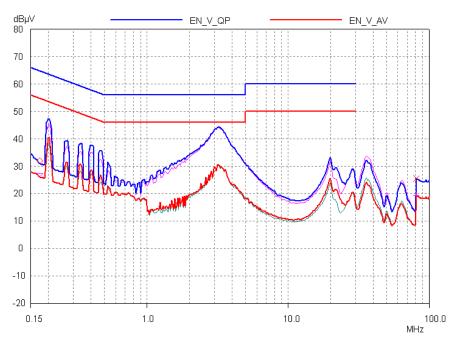


Figure 23 – Conducted EMI, 115 VAC Full Load, LIGHT Traces: N, BOLD Traces: L. OUTRET Grounded.

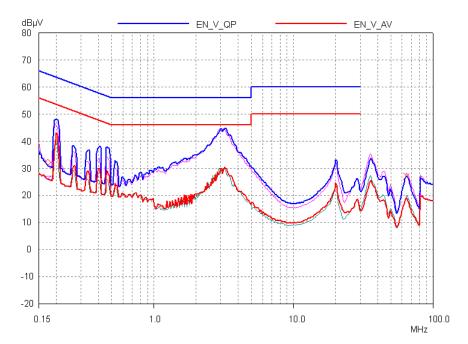


Figure 24 – Conducted EMI, 230 VAC. Full Load, LIGHT Traces: N, BOLD Traces L. OUTRET Grounded.

14 Revision History

Date	Author	Revision	Description & changes	Reviewed
19-Nov-07	SGK	1.0	Initial Release	
18-Dec=07	SGK	1.1	Corrected Schematic	

Notes

Notes

For the latest updates, visit our website: www.powerint.com

Power Integrations reserves the right to make changes to its products at any time to improve reliability or manufacturability. Power Integrations does not assume any liability arising from the use of any device or circuit described herein. POWER INTEGRATIONS MAKES NO WARRANTY HEREIN AND SPECIFICALLY DISCLAIMS ALL WARRANTIES INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT OF THIRD PARTY RIGHTS.

PATENT INFORMATION

The products and applications illustrated herein (including transformer construction and circuits external to the products) may be covered by one or more U.S. and foreign patents, or potentially by pending U.S. and foreign patent applications assigned to Power Integrations. A complete list of Power Integrations' patents may be found at www.powerint.com. Power Integrations grants its customers a license under certain patent rights as set forth at http://www.powerint.com/ip.htm.

The PI Logo, TOPSwitch, TinySwitch, LinkSwitch, DPA-Switch, PeakSwitch, EcoSmart, Clampless, E-Shield, Filterfuse, StackFET, PI Expert and PI FACTS are trademarks of Power Integrations, Inc. Other trademarks are property of their respective companies. ©Copyright 2007 Power Integrations, Inc.

Power Integrations Worldwide Sales Support Locations

WORLD HEADQUARTERS

5245 Hellyer Avenue San Jose, CA 95138, USA. Main: +1-408-414-9200 Customer Service: Phone: +1-408-414-9665 Fax: +1-408-414-9765 *e-mail: usasales@powerint.com*

CHINA (SHANGHAI)

Rm 807-808A, Pacheer Commercial Centre, 555 Nanjing Rd. West Shanghai, P.R.C. 200041 Phone: +86-21-6215-5548 Fax: +86-21-6215-2468 *e-mail: chinasales@powerint.com*

CHINA (SHENZHEN)

Room A, B & C 4th Floor, Block C Elec. Sci. Tech. Bldg. 2070 Shennan Zhong Rd. Shenzhen, Guangdong, China, 518031 Phone: +86-755-8379-3243 Fax: +86-755-8379-5828 *e-mail: chinasales@powerint.com* GERMANY Rueckertstrasse 3 D-80336, Munich Germany Phone: +49-89-5527-3911 Fax: +49-89-5527-3920 *e-mail: eurosales@powerint.com*

INDIA

#1, 14th Main Road Vasanthanagar Bangalore-560052 India
Phone: +91-80-41138020
Fax: +91-80-41138023
e-mail: indiasales@powerint.com

ITALY

Via De Amicis 2 20091 Bresso MI – Italy Phone: +39-028-928-6000 Fax: +39-028-928-6009 *e-mail: eurosales@powerint.com*

JAPAN

Kosei Dai-3 Bldg., 2-12-11, Shin-Yokohama, Kohoku-ku, Yokohama-shi, Kanagawa 222-0033 Phone: +81-45-471-1021 Fax: +81-45-471-3717 *e-mail: japansales@powerint.com*

KOREA

RM 602, 6FL Korea City Air Terminal B/D, 159-6 Samsung-Dong, Kangnam-Gu, Seoul, 135-728, Korea Phone: +82-2-2016-6610 Fax: +82-2-2016-6630 *e-mail: koreasales@powerint.com*

SINGAPORE

51 Newton Road, #15-08/10 Goldhill Plaza, Singapore, 308900 Phone: +65-6358-2160 Fax: +65-6358-2015 *e-mail:* singaporesales@powerint.com

TAIWAN

5F, No. 318, Nei Hu Rd., Sec. 1 Nei Hu Dist. Taipei, Taiwan 114, R.O.C. Phone: +886-2-2659-4570 Fax: +886-2-2659-4550 *e-mail:* taiwansales@powerint.com

UNITED KINGDOM

1st Floor, St. James's House East Street, Farnham Surrey, GU9 7TJ United Kingdom Phone: +44 (0) 1252-730-141 Fax: +44 (0) 1252-727-689 *e-mail: eurosales@powerint.com*

APPLICATIONS HOTLINE World Wide +1-408-414-9660

APPLICATIONS FAX World Wide +1-408-414-9760

Power Integrations Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com