

CODE : TRA291224

DESCRIPTION : FLYBACK CONVERTER FREQ. 55 KHz

MATERIALS	QUANTITY	VYCOM CODE	NOTE
Ferrite : ETD 29 / 16 / 10 mat. N87	1		
Foil: vertical 12 pin	1		
Clips:			NO
Side gap:	0.6 mm		YES
Central air gap:			YES
Copper wire : \varnothing = 0.4 and 0.8			SEE THE WORKING PHASES
Scotch tape:			SEE THE WORKING PHASES
Sterling:			SEE THE WORKING PHASES
Insulation tape:			SEE THE WORKING PHASES
Labels:		TRA291224	WHITE ADHESIVE LABEL

TESTING PROCEDURE :

- 1) Inductance measure: between the pins (1 12) L = 980µH +10%-10% (@ 55 KHz) fixing the gap around 0.6 mm on the side legs
- 2) MEASURE OF THE RESISTENCE: BETWEEN THE PINS N.A.
- 3) MEASURE OF THE DISPERSION INDUCTANCE: BETWEEN THE PINS N.A.
- 4) Measure of the relationship between coils and polarity : set No. of coils= 92 relating to the windings (1 12) and get the coils relative to the windings (2 11) (3 4 5) (10 9 8) with the polarity indicated in the electric scheme.
- 5) DIELECTRIC STRENGTH : Apply 3000 VDC between pins 1 3 and 2 3 for 20 sec. (set the discharge flow at 1mA)

NOTES: 1) 2) 3)	IN ANY CASE USE ONLY UI MATERIALS. PAINT BATH FOR TRANSF(USE INSULATING SHEATH THE EXIT OF WIRES.	L94-V0 CERTIFIED DRMERS. FOR THE ENTRY AND		
	EDITED BY : Andrea De Martin	MODIFIED	DN :	DATE : 16/02/2011

WINDING:

- 1. **N1 WINDING:** wind **46 coils** on **with a 0.4 mm wire**, in order to make a complete layer, start in pin 12 and the end is free
- 2. 3 insulating tape after N1a winding to have 3000 Vac insulating between primary and secondary
- 3. N2a/N2b WINDING: wind 5 coils on with 4 wires of 0.8 mm side by side, in order to put side by side 20 wires on a complete layer. 2 wires in pin 4 and end in pin 5, the others 2 in pin 3 and end in pin 4
- 4. 3 insulating tape after N2a/N2b winding to have 3000 Vac insulating between primary and secondary
- 5. **N1 WINDING:** with the free wire continue the N1 winding and wind on **46 coils** more, in order to make a complete layer. End in pin 1.
- 6. 3 insulating tape after N1 winding to have 3000 Vac insulating between primary and secondary
- 7. N2c/N2d WINDING: wind 5 coils on with 4 wires of 0.8 mm side by side, , in order to put side by side 20 wires on a complete layer. 2 wires in pin 9 and end in pin 8, the others 2 in pin 10 and end in pin 9
- 8. 3 insulating tape after N2c/N2d winding to have 3000 Vac insulating between primary and secondary
- 9. **N3 WINDING:** in the middle of the foil, wind **11 coils on with a 0.4 mm wire**, start in pin 2, end in pin 11
- 10. 1 insulating tape for finish.