Application Note AN-Prod-Type-No

Coolset ${ }^{\text {mw }}$
ICE2AXXX for OFF - Line Switch Mode Power Supply (SMPS)

Authors: Harald Zöllinger

Rainer Kling

Published by Infineon Technologies AG
http://www.infineon.com

Power Manajement \& Supply

ICE2AXXX for OFF - Line Switch Mode Power Supplies

Contents:

Operating Principles 3
Protection Functions9
Overload and Open-Loop Protection (Fig. 6) 11
Overvoltage Protection During Soft Start (Fig. 7) 12
Frequency Reduction 13
Design Procedure 14
Input Diode Bridge (BR1): 15
Determine Input Capacitor (C3): 15
Transformer Design (TR1): 17
SENSE RESISTOR 18
Winding Design: 19
Output Rectifier (D1): 21
Output Capacitors (C5, C9): 22
Output Filter (L3, C23): 23
RC-Filter at Feedback Pin 23
Soft-start capacitor. 24
VCC Capacitor: 25
Start-up Resistor (R6, R7): 25
Clamping Network: 26
CALCULATION OF LOSSES: 27
Switching losses: 28
Conduction losses: 28
Regulation Loop: 29
Regulation Loop Elements: 30
Zeros and Poles of transfer characteristics: 31
Calculation of transient impedance $Z_{P W M}$ of ICE2AXXX. 32
Transfer characteristics: 33
Continuous Conduction Mode (CCM) 36
TRANSFORMER CALCULATION: 36
Slope Compensation. 37
Transformer Construction 38
Layout Recommendation: 39
Output Power Table 40
Summary of used Nomenclature 41
REFERENCES. 42

Operating Principles

The ICE2AXXX is designed for a current-mode flyback configuration in discontinous (DCM) or continous conduction (CCM) mode.

The control circuit has a fixed frequency. The duty cycle (D) of the integrated CoolMOS ${ }^{\text {TM }}$ Transistor is controlled to maintain a constant output voltage ($\mathrm{V}_{\text {OUT }}$).
Fig. 1 shows the input voltage $\left(\mathrm{V}_{\mathrm{DC}} \mathrm{IN}\right)$, the primary current $\left(\mathrm{I}_{\mathrm{LPK}}\right)$, and the secondary ($\left.\mathrm{I}_{\mathrm{SEC}}\right)$ transformer currentof the flyback converter depicted on p. 3
When the CoolMOS ${ }^{\text {TM }}$ Transistor is swiched on, the initial state of all windings on the transformer is at positive potential.

The rectifier diode (D1) on the secondary side is reverse biased and therefore does not conduct. Consequently no current flows in the secondary winding. During this phase, energy is stored in the inductance of the primary winding and the transformer can be treated as a simple series inductor.
Fig. 1 shows that there is a linear increase of the primary current (l $l_{\text {PRI }}$) while the CoolMOS Transistor is on.

When the CoolMOS Transistor is swiched off, the voltage reverses on all transformer windings (flyback action) until it is clamped by rectifier diode on the secondary side. Now the secondary rectifier diode (D1) is conducting, and the magnetizing energy stored in the transformer core is transferred to the secondary side during the reset interval.

In the discontinous conduction mode DCM the secondary current ($l_{\text {SEC }}$) decreases from its peak value to zero (Fig. 1). During this period the whole energy stored in the primary inductance is transferred to the secondary side (neglecting losses and energy stored in the primary leakage inductance), then the next storage cycle starts. Taking into account the transformer turns ratio, the secondary voltage $\left(\mathrm{V}_{\mathrm{SEC}}\right)$ is "reflected" back $\left(\mathrm{V}_{\mathrm{R}}\right)$ to the primary winding and adds to the input voltage $\left(\mathrm{V}_{\mathrm{DC}, \mathrm{N}}+\mathrm{V}_{\mathrm{R}}\right)$. An additional transient voltage may appear on the primary winding due to energy stored in the uncoupled "leakage" inductance in the primary winding. This voltage is not clamped by the secondary side winding. If the flyback current ($l_{\text {LPK }}$ and $I_{\text {SEC }}$) does not reach zero before the next "on" cycle the converter is operating in continous conduction mode (Fig. 2).
Note:
When the system shifts to continous conduction operation, its transfer function is changed to a two pole system with low output impedance. In this case additional design rules have to be taken into account including different loop compensation and slope compensation on the primary side.

Voltage and current waveforms in discontinous conduction mode (DCM) operation:

Comparison of continous conduction (CCM) and discontinous conduction (DCM) mode.

Fig. 2

Input stage

As shown in Fig. 3 the AC input power is rectified and filtered by the bridge rectifier (BR1) and the bulk capacitor C3. This create a DC high voltage bus which is connected to the primary winding of the transformer (TR1). The transformer is driven by the CoolSET ${ }^{T M}$ integrated high voltage, avalanche rugged CoolMOS ${ }^{\top M}$ transistor, with an external sense resistor (R17) for precision current mesurement.

Output stage

The secondary winding power is rectified and filtered by a diode (D1), capacitors (C5, C9 and C20). The output LC-filter (L3, C23) reduces the output voltage ripple.

Other output voltages

Other output voltages can be realized by adjusting the transformer turn ratio and the output stage.

Chip supply

The current in the bias winding is rectified and filtered by a diode (D2) and a resistor (R8) in order to charge the the supply capacitor (C4). This creates a bias voltage that powers the CoolSET ${ }^{\text {TM }}$ ICE 2AXXX. The resistors R6 and R7 charge the VCC Cap and supply the chip during startup. The Zener diode (D4) clamps the chip supply voltage (Vcc) in order to protect the chip in case of an over-voltage condition. Capacitor C13 filters high frequency ripples on the chip supply voltage (Vcc).

Soft-Start

A soft-start function is activated during start-up, and can be adjusted by capacitor C 14 . In addition to start-up, soft-start is activated at each restart attempt during auto-restart and when restarting after one of the several protection functions are activated. This effectively minimizes current and voltage stresses on the CoolMOS ${ }^{\text {™ }}$ MOSFET, the snubber network, and the output rectifier during start-up. The soft-start feature further helps to minimize output overshoot and prevents saturation of the transformer during start-up.

Clamping network

The clamping network which consists of a diode (D3), a resistor (R10) and a capacitor (C12) clamps the voltage spike caused by the transformer leakage inductance to a safe value this limits the avalanche losses of the CoolMOS ${ }^{\text {™ }}$ transistor.

Control Loop

The resistors R1 and R2 represent the voltage divider for the reference diode TL431CLP (IC2). R4 supplies the TL431CLP reference diode with a minimum current and R3 the LED of the optocoupler. The network which consists of capacitors C1 and C2 determines the corner frequencies fg1 and fg2. R5 sets the gain of the control loop.

Slope Compensation

The current mode controller becomes unstable whenever the steady - state duty cycle D is larger than 0.5 . In order to realize a design with a duty cycle greater 0.5 , the slope of the current needs to be compensated. The slope compensation is realized by the network consisting of capacitor C17, C18 and the resistor R19.

Ripple Reduction

Inductor L5 and capacitor C23 attenuate the differential - mode emission currents caused by the fundamental and harmonic frequencies of the primary current waveform.

SMPS Calculation Software FLYCAL

FLYCAL is an EXCEL spread sheet with all Equations needed for the easy calculaton of your SMPS. FLYCAL corresponds with the calculaton example in this application note. You only have to enter the main parameters of your application in FLYCAL and to follow step by step the principle outlined in the calculation example. FLYCAL contains all equations used in the example with the same consecutive numbering.

Circuit Diagram:

Fig. 3

Protection Functions

The block diagram displayed in Fig. 4 shows the interal functions of the protection unit. The comparators C1, C2, C3 and C4 compare the soft-start and feedback-pin voltages. Logic gates connected to the comparator outputs ensure the combination of the signals and enables the setting of the "Error-Latch".

Fig. 4

ICE2AXXX for OFF - Line Switch Mode Power Supplies

Fig. 5 shows the relation between the voltages at the soft start (Vss) and the feedback pins $\left(\mathrm{V}_{\mathrm{FB}}\right)$ of ICE2AXXX, as a function of the supply voltage (Vcc) during an overvoltage condition at CoolSET soft start.

Depending on the voltage levels at the inputs, the overvoltage and (Vcc - PIN 7) and overload ($\mathrm{V}_{\mathrm{FB}}-$ PIN 2) protection functions are activated.

Fig. 5

Overload and Open-Loop Protection

- Feedback voltage (VFB) exceeds 4.8 V and soft start voltage (VSS) is above 5.3 V (soft start is completed) (t1)
- After a $5 \mu \mathrm{~s}$ delay the CoolMOS is switched off
- Voltage at Vcc - Pin (VCC) decreases to 8.5 V
- Control logic is switched off (t3)
- Start-up resistor charges Vcc capacitor (t3)
- Operation starts again with soft start after Vcc voltage has exceeded 13.5 V
(t4)

Fig. 6

Fig. 7

Fig. 8

Overvoltage Protection During Soft Start

- Feedback voltage (VFB) exceeds 4.8 V and soft-start voltage (VSS) is below 4.0V (soft start phase) (t1)
- Voltage at Vcc pin (VCC) exceeds 16.5 V
- CoolMOS transistor is immediately switched off
- Voltage at VCC pin decreases to 8.5 V
(t3)
- Control logic is switched off (t3)
- Start-up resistor charges VCC capacitor(t4)
- Operation starts again with soft start after VCC voltage has exceeded 13.5 V
(t5)

Fig. 9

Fig. 10

Fig. 11

Frequency Reduction

The frequency of the oscillator depends on the voltage at pin FB.
Below a voltage of typ. 1.75 V the frequency decreases down to 21.5 kHz .
Due to this frequency reduction the power losses in low load condition can be reduced very effectively. This dependency is shown in Fig. 12

Fig. 12

ICE2AXXX for OFF - Line Switch Mode Power Supplies

Design Procedure

for fixed frequency Flyback Converter with ICE2AXXX operating in discontinuous current mode.

Procedure Example

Define input Parameters:

Minimal AC input voltage:	$\mathrm{V}_{\mathrm{AC} \text { min }}$
Maximal AC input voltage:	$\mathrm{V}_{\mathrm{AC} \text { max }}$
Line frequency:	f_{AC}
Max. output power:	$\mathrm{P}_{\mathrm{OUT} \text { max }}$
Nom. output power:	$\mathrm{P}_{\mathrm{OUT} \text { nom }}$
Min. output power:	$\mathrm{P}_{\mathrm{OUT} \text { min }}$
Output voltage:	$\mathrm{V}_{\mathrm{OUT}}$
Output ripple voltage:	$\mathrm{V}_{\mathrm{OUT} \text { Ripple }}$
Reflection voltage:	$\mathrm{V}_{\mathrm{Rmax}}$
Estimated efficiency:	η
DC ripple voltage:	$\mathrm{V}_{\mathrm{DC} \text { IN Ripple }}$
Auxiliary voltage:	$\mathrm{V}_{\mathrm{Aux}}$

Input Diode Bridge (BR1):

$$
\begin{equation*}
I_{A C R M S}=\frac{P_{I N M A X}}{V_{A C \min } \cdot \cos \varphi} \tag{Eq2}
\end{equation*}
$$

$$
I_{A C R M S}=\frac{59 \mathrm{~W}}{90 \mathrm{~V} \cdot 0,6}=1,09 \mathrm{~A}
$$

Maximum DC IN voltage

$$
\begin{equation*}
V_{D C \max P K}=V_{A C \text { max }} \cdot \sqrt{2} \tag{Eq3}
\end{equation*}
$$

Determine Input Capacitor (C3):

Minimum peak input voltage at "no load" condition

$$
V_{D C \min P K}=V_{A C \min } \cdot \sqrt{2}
$$

(Eq 4)
$V_{D C \min P K}=90 \mathrm{~V} \cdot \sqrt{2}=127 \mathrm{~V}$ we choose a ripple voltage of 30 V
$V_{D C \text { min }}=V_{D C \text { min } P K}-V_{\text {Ripple }}$

Calculation of discharging time at each half-line cycle:

$$
T_{D}=5 \mathrm{~ms} \cdot\left(1+\frac{\arcsin \frac{V_{D C \text { min }}}{V_{D C \text { min } P K}}}{90}\right)
$$

(Eq 6)

$$
T_{D}=5 \mathrm{~ms} \cdot\left(1+\frac{\arcsin \frac{97 V}{127 V}}{90}\right)=7,7 \mathrm{~ms}
$$

Required energy at discharging time of C3:

$$
\begin{equation*}
W_{I N}=P_{I N \max } \cdot T_{D} \tag{Eq7}
\end{equation*}
$$

$W_{I N}=59 \mathrm{~W} \cdot 7,7 \mathrm{~ms}=0,46 \mathrm{Ws}$

Calculation of input capacitor value C_{IN} :

$$
C_{I N}=\frac{2 \cdot W_{I N}}{V_{D C \min P K}^{2}-V_{D C \min }^{2}}
$$

Alternatively a rule of thumb for choosing $\mathrm{C}_{\mathbb{N}}$ can be applied:	
$\underline{\text { Input voltage }} \quad \mathrm{C}_{\underline{N}}$	
115V $2 \mu \mathrm{~F} / \mathrm{W}$	
230 V - $1 \mu \mathrm{~F} / \mathrm{W}$	
85V ...270V 2 ...34F/W.................	$59 \mathrm{~W} \cdot 3 \frac{\mu F}{W}=177 \mu \mathrm{~F}$
Recalculation of input Capacitor:	
Select a capacitor from the Epcos Databook of Aluminium Electrolytic Capacitors.	
The following types are preferred:	
For $85^{\circ} \mathrm{C}$ Applications:	
Series B43303-........ \quad 2000h life time B43501-...... 10000 h life time	
For $105^{\circ} \mathrm{C}$ Applications:	We choose 150رF 400V (based on Eq 8)
$\begin{equation*} V_{D C \text { min }}=\sqrt{V_{D C \text { min } P K}^{2}-\frac{2 \cdot W_{I N}}{C_{I N}}} \tag{Eq9} \end{equation*}$	$V_{D C \min }=\sqrt{16129 V^{2}-\frac{2 \cdot 0,46 W_{s}}{150 \mu F}}=100 \mathrm{~V}$
Note that special requirements for hold up time, including cycle skip/dropout, or other factors which affect the resulting minimum DC input voltage and capacitor time should be considered at this point also.	

Transformer Design (TR1):

Calculation of peak current of primary inductance:

$$
\begin{equation*}
D_{\max }=\frac{V_{R \max }}{V_{R \max }+V_{D C \min }} \tag{Eq10a}
\end{equation*}
$$

$$
\begin{equation*}
I_{L P K}=\frac{2 \cdot P_{I N M A X}}{V_{D C \min } \cdot D_{\max }} \tag{Eq10b}
\end{equation*}
$$

$$
\begin{equation*}
I_{L R M S}=I_{L P K} \cdot \sqrt{\frac{D_{\max }}{3}} \tag{Eq11}
\end{equation*}
$$

Calculation of primary inductance within the limit of maximum Duty-Cycle :
$L_{P}=\frac{D_{\max } \cdot V_{D C \min }}{I_{L P K} \cdot f}$

Select core type and inductance factor $\left(A_{L}\right)$ from Epcos
„Ferrite Databook" or CD-ROM
„Passive Components".
Fix maximum flux density:
$B_{\max } \approx 0,2 T \ldots 0,3 T$ for ferrite cores depending on core material.
We choose 0,2T for material N27

The number of primary turns can be calculated as:

$$
\begin{equation*}
N_{P}=\sqrt{\frac{L_{P}}{A_{L}}} \tag{Eq13}
\end{equation*}
$$

The number of secondary turns can be calculated as:
$N s=\frac{N_{P} \cdot\left(V_{\text {OUT }}+V_{\text {FDIODE }}\right)}{V_{R \max }}$
(Eq 14)

The number of auxiliary turns can be calculated as:

$$
\begin{equation*}
N_{A u x}=\frac{N s \cdot\left(V_{A u x}+V_{F D I O D E}\right)}{V_{R \max }} \tag{Eq15}
\end{equation*}
$$

$$
\begin{aligned}
& D_{\max }=\frac{120 \mathrm{~V}}{120 \mathrm{~V}+100 \mathrm{~V}}=0,55 \\
& I_{L P K}=\frac{2 \cdot 59 \mathrm{~W}}{100 \mathrm{~V} \cdot 0,55}=2,16 \mathrm{~A} \\
& I_{L R M S}=2,16 \mathrm{~A} \cdot \sqrt{\frac{0,55}{3}}=0,92 \mathrm{~A} \\
& L_{P}=\frac{0,55 \cdot 100 \mathrm{~V}}{2,16 \mathrm{~A} \cdot 100 * 10^{3} \mathrm{~Hz}}=253 \mu \mathrm{H}
\end{aligned}
$$

Selected core: E 25/13/7
Material $=$ N27
$A_{L}=111 \mathrm{nH}$
$\mathrm{s}=0,75 \mathrm{~mm}$
$A_{e}=52 \mathrm{~mm}^{2}$
$A_{N}=61 \mathrm{~mm}^{2}$
$l_{N}=57,5 \mathrm{~mm}$
$N_{P}=\sqrt{\frac{253 \mu H}{111 n H}}=47,7$ turns
we choose $\mathrm{Np}=46$ turns
$N s=\frac{46 \cdot(16 \mathrm{~V}+0,8 \mathrm{~V})}{120 \mathrm{~V}}=6,46$
we choose $\mathrm{N}_{\mathrm{S}}=7$ turns
$N s=\frac{46 \cdot(12 \mathrm{~V}+0,7 \mathrm{~V})}{120 \mathrm{~V}}=5,6$
we choose $\mathrm{N}_{\text {Aux }}=5$ turns

Verification of primary inductance, primary peak current, max. duty cycle, flux density and gap:

$$
\begin{equation*}
L_{P}=N_{P}^{2} \cdot A_{l} \tag{Eq16}
\end{equation*}
$$

$I_{L P K}=\sqrt{\frac{P_{I N \max }}{0,5 \cdot L p \cdot f}}$
$V_{R}=\frac{\left(V_{\text {OUT }}+V_{\text {FDIODE }}\right) \cdot N_{P}}{N_{s}}$
$D_{\text {max }}=\frac{L_{P} \cdot I_{L P K} \cdot f}{V_{D C \text { min }}}$
$D_{\text {max }}^{\prime}=\frac{L_{P} \cdot I_{L P K} \cdot f}{V_{R}}$
$B_{\text {max }}=\frac{L_{P} \cdot I_{L P K}}{N_{P} \cdot A_{e}}$
$s=\frac{4 \cdot \pi \cdot 10^{-7} \cdot N_{P}^{2} \cdot A_{e}}{L_{P}}$

Sense resistor

The sense resistance $\mathrm{R}_{\text {Sense }}$ can be used to individually define the maximum peak current and thus the maximum power transmitted.

Caution:

When calculating the maximum peak current, short term peaks in output-power must also be taken into consideration.

$$
\begin{equation*}
R_{\text {Sense }}=\frac{V_{c s t h}}{I_{L P K}} \tag{Eq23}
\end{equation*}
$$

$$
\begin{aligned}
& L_{P}=46^{2} \cdot 111 \mathrm{nH}=235 \mu \mathrm{H} \\
& I_{L P K}=\sqrt{\frac{59 \mathrm{~W}}{0,5 \cdot 235 \mu \mathrm{H} \cdot 100^{*} 10^{3} \mathrm{~Hz}}}=2,24 \mathrm{~A} \\
& V_{R}=\frac{(16 \mathrm{~V}+0,8 \mathrm{~V}) \cdot 46}{7}=110 \mathrm{~V} \\
& D_{\max }=\frac{235 \mu \mathrm{H} \cdot 2,24 \mathrm{~A} \cdot 100 \mathrm{kHz}}{100 \mathrm{~V}}=0,53 \\
& D_{\text {max }}^{\prime}=\frac{235 \mu \mathrm{H} \cdot 2,24 \mathrm{~A} \cdot 100 \mathrm{kHz}}{110 \mathrm{~V}}=0,47 \\
& B_{\max }=\frac{235 \mu \mathrm{H} \cdot 2,24 \mathrm{~A}}{46 \cdot 52 \mathrm{~mm}^{2}}=210 \mathrm{mT} \\
& s=\frac{4 \cdot \pi \cdot 10^{-7} \cdot 46^{2} \cdot 52 \mathrm{~mm}^{2}}{235 \mu \mathrm{H}}=0,588 \mathrm{~mm}
\end{aligned}
$$

Vcsth $=1.0 \mathrm{~V}$ typ. (taken from data sheet)

$$
\begin{array}{ll}
R_{\text {Sense }}=\frac{1,0 \mathrm{~V}}{2,24 \mathrm{~A}}=0,45 \Omega \\
\text { we select } 0,43 \Omega \Rightarrow & \begin{array}{l}
\text { LPK }=2,33 \mathrm{~A}
\end{array} \\
& \text { PouTmax }=54 \mathrm{~W}
\end{array}
$$

Winding Design:

see also page 38

Transformer Construction

The primary winding of 46 turns has to be divided into $23+23$ turns in order to get the best coupling between primary and secondary winding.

The effective bobbin width and winding cross section can be calculated as:

$$
B W_{e}=B W-2 \cdot M
$$

$$
A_{N e}=\frac{A_{N} \cdot B W_{e}}{B W}
$$

Calculate copper section for primary and secondary winding:

The winding cross section A_{N} has to be subdivided according to the number of windings.

Primary winding	0,5
Secondary winding	0,45
Auxiliary winding	0,05

Copper space factor $f_{C u}: 0,2 \ldots .0,4$
$A_{P}=\frac{0,5 \cdot A_{N} \cdot f_{C u} \cdot B W_{e}}{N_{P} \cdot B W}$
$A W G=9,97 \cdot(1,8277-(2 \cdot \log (d)))$
(Eq 26)
From bobbin datasheet E25/13/7: BW = 15,6mm
Margin determined: $\mathrm{M}=0 \mathrm{~mm}$
\Rightarrow we use triple insulated wire for secondary
winding
$B W_{e}=15,6 \mathrm{~mm}$
$A_{N e}=61 \mathrm{~mm}^{2}$

We calculate the available area for each winding:
Used for calculation: $f_{C u}=0,3$
$A_{P}=\frac{0,5 \cdot 61 \mathrm{~mm}^{2} \cdot 0,3}{46}=0,2 \mathrm{~mm}^{2}$
(Eq 27) \Rightarrow diameter $\mathrm{dp} \approx 0,5 \mathrm{~mm} \Rightarrow 25$ AWG

$$
A_{s}=\frac{0,45 \cdot A_{N} \cdot f_{C u} \cdot B W_{e}}{N_{s} \cdot B W}
$$

(Eq 28)
$A_{a u x}=\frac{0,05 \cdot A_{N} \cdot f_{C u} \cdot B W_{e}}{N_{a u x} \cdot B W}$
$\Rightarrow \quad$ diameter ds $2 \times 0,8 \mathrm{~mm} \Rightarrow 2 \times 20$ AWG
(Eq 29)

With the effective bobbin width we check the number of turns per layer:
$N_{P}=\frac{B W e}{d_{P}}$
(Eq 30) $\quad N_{P}=\frac{15,6 \mathrm{~mm}}{0,46 \mathrm{~mm}}=31$ turns per layer
$\Rightarrow 2$ layer needed

Secondary:
$N_{S}=\frac{15,6 \mathrm{~mm}}{2 \cdot 1,21 \mathrm{~mm}}=6$ turns per layer

$$
\Rightarrow 2 \text { layer needed }
$$

Auxiliary: 1 layer!

Output Rectifier (D1):

The output rectifier diodes in flyback converters are subjected to a large PEAK and RMS current stress. The values depend on the load and operating mode. The voltage requirements depend on the output voltage and the transformer winding ratio.

Calculation of the maximum reverse voltage:

$$
\begin{equation*}
V_{R D i o d e}=V_{O U T}+\left(V_{D C \max P K} \cdot \frac{N_{S}}{N_{P}}\right) \tag{Eq31}
\end{equation*}
$$

$V_{\text {RDiode }}=16 \mathrm{~V}+\left(373 \mathrm{~V} \cdot \frac{7}{46}\right)=72,8 \mathrm{~V}$

Calculation of the maximum current on secondary side:

$$
\begin{align*}
& I_{S P K}=I_{L P K} \cdot \frac{N_{P}}{N_{S}} \tag{Eq32}\\
& I_{S R M S}=I_{S P K} \cdot \sqrt{1 / 3 \cdot D_{\max }^{\prime}} \tag{Eq33}
\end{align*}
$$

$$
\begin{aligned}
& I_{S P K}=2,33 \mathrm{~A} \cdot \frac{46}{7}=15,3 \mathrm{~A} \\
& I_{S R M S}=15,3 \mathrm{~A} \cdot \sqrt{1 / 3 \cdot 0,47}=5,9 \mathrm{~A}
\end{aligned}
$$

Output Capacitors (C5, C9):	To calculate the output capacitor, it is necessary to set the maximum voltage overshoot in case of switching off @ maximum load condition.
Output capacitors are highly stressed in flyback converters. Normally the capacitor will be selected for 3 major parameters: capacitance value, low ESR and ripple current rating.	After switching off the load, the control loop needs about 10... 20 internal clock periods to reduce the duty cycle.
Max. voltage overshoot: $\Delta \mathrm{V}_{\text {OUT }}$	$\Delta V_{\text {OUT }}=0,5 \mathrm{~V}$
Number of clock periods: n_{CP}	$\mathrm{n}_{\mathrm{CP}}=20$
$\begin{equation*} C_{\text {OUT }}=\frac{I_{\text {OUT } \max } \cdot \mathrm{n}_{\mathrm{CP}}}{\Delta V_{\text {OUT }} \cdot f} \tag{Eq34} \end{equation*}$	$C_{\text {OUT }}=\frac{3,1 \mathrm{~A} \cdot 20}{0,5 \mathrm{~V} \cdot 100 * 10^{3} \mathrm{~Hz}}=1250 \mu \mathrm{~F}$
$I_{O U T}=\frac{P_{O U T \max }}{V_{O U T}}$ (Eq 34a)	$I_{\text {OUT }}=\frac{50 \mathrm{~W}}{16 \mathrm{~V}}=3,1 \mathrm{~A}$
$\begin{equation*} I_{\text {Ripple }}=\sqrt{I_{\text {SRMS }}^{2}-I_{O U T}^{2}} \tag{Eq34b} \end{equation*}$	$I_{\text {Ripple }}=\sqrt{5,9 A^{2}-3,1 A^{2}}=5,0 \mathrm{~A}$
Select a capacitor out of Epcos Databook for Aluminium Electrolytic Capacitors.	
The following types are preferred:	We select $1000 \mu \mathrm{~F} 35 \mathrm{~V}$ (based on Eq 34):
For $105^{\circ} \mathrm{C}$ Applications low impedance:	B41859-F7108-M
Series B41856-....... 4000h life time	$\mathrm{ESR} \approx \mathrm{Zmax}=0,034 \Omega @ 100 \mathrm{kHz}$
For $105^{\circ} \mathrm{C}$ Applications lowest impedance:	
Series B41859-....... 4000h life time	$\operatorname{lac}_{R}=1,94 \mathrm{~A}$ \Rightarrow we need 2 capacitors in parallel

Output Filter (L3, C23):

The output filter consists of one capacitor (C23) and one inductor (L3) in a L-C filter topology.

Zero frequency of output capacitor (C5,C9, C20) and associated ESR:

$$
\begin{equation*}
f_{\text {ZCOUT }}=\frac{1}{2 \cdot \pi \cdot R_{E S R} \cdot C_{O U T}} \tag{Eq35}
\end{equation*}
$$

Calculation of the inductance (L3) needed for the substitution of the zero caused by the output capacitors:

$$
\begin{equation*}
L_{\text {OUT }}=\frac{\left(C_{\text {OUT }} \cdot R_{E S R}\right)^{2}}{C_{L C}} \tag{Eq36}
\end{equation*}
$$

RC-Filter at Feedback Pin

(C6, R9)

The RC Filter at the Feedback pin is designed to supress any noise which may be coupled in on this track.

Typical values:
C6 : 1...4,7nF
R9: 22 Ohm

Note that the value of C6 interacts with the internal pullup (3,7k typical) to create a filter.

ICE2AXXX for OFF - Line Switch Mode Power Supplies

Soft-start capacitor

(C14)

The voltage at the soft-start pin together with feedback voltage controls the overvoltage, open loop and overcurrent protection functions.

The softstart capacitor must be calculated in such a way that the output voltage and thus the feedback voltage is within the working range $\left(\mathrm{V}_{\mathrm{FB}}\right.$ $<4.8 \mathrm{~V}$) before the over-current threshold (typ. 5.3 V) is reached.
$t_{\text {Sstart }}=V o^{2} \cdot \frac{C_{\text {out }}}{P_{\text {OUT } \max }-P_{\text {OUTnom }}}$
(Eq37)
$C_{S S}=t_{\text {Sstart }} \cdot \frac{1}{-R_{\text {Soft-Start }} \cdot \ln \left(1-\frac{V_{\text {Soft }- \text { Start } 1 \mathrm{1}}}{V_{R E F}}\right)} \quad$ (Eq38)
$R_{\text {soft start }}=50 \mathrm{k} \Omega$ typ (from datasheet).
$t_{\text {Sstart }}=16 \mathrm{~V}^{2} \cdot \frac{2470 u \mathrm{~F}}{54 \mathrm{~W}-40 \mathrm{~W}}=45 \mathrm{~ms}$
$C_{S S}=45 \mathrm{~ms} \cdot \frac{1}{-50 \mathrm{k} \Omega \cdot \ln \left(1-\frac{5,1 V}{6,5 V}\right)}=586 n \mathrm{~F}$
choose 560nF

VCC Capacitor:

(C4, C13)

The VCC capacitor needs to ensure the power supply of the IC until the power can be provided by the auxiliary winding.

In parallel with the VCC Capacitor it is recommended to use a 100 nF ceramic capacitor very close between pin 7 \& 8. Alternatively, an HF type electrolytic with low ESR and ESL may be used.

$$
\begin{equation*}
C_{V C C}=\frac{I_{V C C 3} \cdot t_{\text {sofstart }}}{V_{C C H Y}} * \frac{2}{3} \tag{Eq39}
\end{equation*}
$$

Start-up Resistor (R6, R7):

$\mathrm{I}_{\mathrm{VCC} 1}=$ max. quiescent current (Control IC)
$I_{\text {LoadC }}=$ VCC-Capacitor load-current (C4)
$\mathrm{C}_{\mathrm{VCC}}=$ Value of VCC-capacitor (C4)

$$
\begin{equation*}
R_{\text {Start }}=\frac{V_{D C \min }}{I_{V C C 1}+I_{L o a d C}} \tag{Eq40}
\end{equation*}
$$

Start up Time $\mathrm{t}_{\text {Start }}$:

$$
\begin{equation*}
t_{\text {Start }}=\frac{C_{V C C} \cdot V_{C C o n}}{I_{\text {LoadC }}} \tag{Eq41}
\end{equation*}
$$

$t_{\text {Start }}=\frac{47 \mu F \cdot 13,5 \mathrm{~V}}{73 \mu \mathrm{~A}}=8,7 \mathrm{~s}$

Note:
Before the IC can be plugged into the application board, the VCC capacitor must be always
discharged!

ICE2AXXX for OFF - Line Switch Mode Power Supplies

Clamping Network:

(R10/C12/D3)

$$
\begin{equation*}
V_{\text {Clamp }}=V_{(B R) D S S}-V_{D C \max }-V_{R} \tag{Eq42}
\end{equation*}
$$

$V_{\text {Clamp }}=650 \mathrm{~V}-373 \mathrm{~V}-110 \mathrm{~V}=166 \mathrm{~V}$

For calculating the clamping network it is necessary to know the leakage inductance. The most common way is to have the value of the leakage inductance ($L_{\text {LK }}$) given in percentage of the primary inductance ($L p$). If it is known that the transformer construction is very consistent, measuring the primary leakage inductance by shorting the secondary windings will give an exact number (assuming the availability of a good LCR analyser).

$$
L_{L K}=L p \cdot x \%
$$

$C_{\text {Clamp }}=\frac{I_{L P K}{ }^{2} \cdot L_{L K}}{\left(V_{R}+V_{\text {Clamp }}\right) \cdot V_{\text {Clamp }}}$
$R_{\text {Clamp }}=\frac{\left(V_{\text {Clamp }}+V_{R}\right)^{2}-V_{R}^{2}}{0,5 \cdot L_{L K} \cdot I_{L P K}{ }^{2} \cdot f}$
(Eq 44)

In our example we choose 5\% of the primary inductance for leakage inductance.
$L_{L K}=235 \mu H \cdot 5 \%=11,8 \mu H$
$C_{\text {Clamp }}=\frac{(2,24 A)^{2} \cdot 11,8 \mu H}{(110 V+166 V) \cdot 166 V}=1,2 n F \approx$
we choose $1,5 \mathrm{nF}$
$R_{\text {Clamp }}=\frac{(166 \mathrm{~V}+110 \mathrm{~V})^{2}-110 \mathrm{~V}^{2}}{0,5 \cdot 11,8 \mu \mathrm{H} \cdot(2,24 \mathrm{~A})^{2} \cdot 100 * 10^{3} \mathrm{~Hz}}=23,9 \mathrm{k} \Omega$
we choose $22 \mathrm{k} \Omega$

Calculation of Losses:

Input diode bridge (BR1):

$$
\begin{equation*}
P_{D I N}=I_{A C R M S} \cdot V_{F} \cdot 2 \tag{Eq45}
\end{equation*}
$$

$P_{D I N}=1,1 \mathrm{~A} \cdot 1 \mathrm{~V} \cdot 2=2,2 \mathrm{~W}$

Copper resistivity $p_{100} @ 100^{\circ} \mathrm{C}=0,0172 \Omega \mathrm{~mm}^{2} / \mathrm{m}$

$$
\begin{equation*}
R_{P C u}=\frac{l_{N} \cdot N_{P} \cdot p_{100}}{A_{P}} \tag{Eq46}
\end{equation*}
$$

$$
\left\{\begin{array}{l}
R_{P C u}=\frac{0,0644 \mathrm{~m} \cdot 46 \cdot 17,2 \mathrm{~m} \Omega \mathrm{~mm}^{2} / \mathrm{m}}{0,46 \mathrm{~mm}^{2}}=277,1 \mathrm{~m} \Omega \\
R_{S C u}=\frac{0,0644 \mathrm{~m} \cdot 7 \cdot 17,2 \mathrm{~m} \Omega \mathrm{~mm}^{2} / \mathrm{m}}{2,10 \mathrm{~mm}^{2}}=6,6 \mathrm{~m} \Omega
\end{array}\right.
$$

Calculation of copper losses (TR1):

$P_{P C u}=I_{L P K}^{2} \cdot D_{M A X} \cdot 1 / 3 \cdot R_{P C u}$
(Eq 47)
$P_{S C u}=I_{S P K}^{2} \cdot D_{M A X}^{\prime} \cdot 1 / 3 \cdot R_{S C u}$

$$
\begin{aligned}
& P_{P C u}=(2,33 \mathrm{~A})^{2} \cdot 0,53 \cdot 1 / 3 \cdot 277,1 \mathrm{~m} \Omega=225,7 \mathrm{~mW} \\
& P_{S C u}=(15,3 \mathrm{~A})^{2} \cdot 0,47 \cdot 1 / 3 \cdot 2,01 \mathrm{~m} \Omega=227,4 \mathrm{~mW} \\
& \sum P_{C u}=225,7 \mathrm{~mW}+227,4 m W=453,1 \mathrm{~mW}
\end{aligned}
$$

Output rectifier diode (D1):
$P_{\text {DDIODE }}=I_{S P K} \cdot \sqrt{\frac{D_{\text {max }}^{\prime}}{3}} \cdot V_{\text {FDIODE }}$
(Eq 48)
$P_{\text {DDIODE }}=15,3 \mathrm{~A} \cdot \sqrt{\frac{0,47}{3}} \cdot 0,8 \mathrm{~V}=5 \mathrm{~W}$

COOLMOS TRANSISTOR:

ICE2A365 $\mathrm{C}_{\text {o(er) }}=30 \mathrm{pF}$
Calculated @ $\mathrm{V}_{\mathrm{DCmin}}=100 \mathrm{~V}$
$\mathrm{C}_{\mathrm{O}} \approx 80 \mathrm{pF}\left(\mathrm{C}_{\mathrm{O}}=\mathrm{C}_{\mathrm{O}(\text { er })}+\mathrm{C}_{\text {Extern }}\right)$
$R_{\text {DSON }}=1,1 \Omega$ (@ $\left.125^{\circ} \mathrm{C}\right)$

Switching losses:

$P_{S O N}=1 / 2 \cdot C_{O} \cdot V_{D C \text { min }}^{2} \cdot f$

Conduction losses:

$P_{D}=1 / 3 \cdot R_{D S O N} \cdot I_{L P K}^{2} \cdot D_{\max }$

Summary of Losses:
$P_{\text {Losses }}=P_{S O N}+P_{D}$

Thermal Calculation:

Table of typical thermal Resistance $\left[\frac{K}{W}\right.$]:

Heatsink	DIP8	DIP7	TO220
No	90	96	74
$3 \mathrm{~cm}^{2}$	64	72	
$6 \mathrm{~cm}^{2}$	56	65	

$d T=P_{\text {Losses }} * R_{t h}$
$T j=d T+T a$
(Eq 53)
(see also ICE2AXXX Data Sheet)

$$
P_{S O N}=1 / 2 \cdot 80 \mathrm{pF} \cdot 100 \mathrm{~V}^{2} \cdot 100 * 10^{3} \mathrm{~Hz}=40 \mathrm{~mW}
$$

$$
P_{D}=1 / 3 \cdot 1 \Omega \cdot(2,33 A)^{2} \cdot 0,53=0,95 \mathrm{~W}
$$

$$
P_{\text {Losses }}=40 \mathrm{~mW}+950 \mathrm{~mW}=0,99 \mathrm{~W}
$$

$d T=0,99 W * 56 \frac{K}{W}=55,4 K$
$T j=55,4 \mathrm{~K}+50^{\circ} \mathrm{C}=115,4^{\circ} \mathrm{C}$

Regulation Loop:

Reference: TL431 (IC2)

$$
\begin{aligned}
& V_{\mathrm{REF}}=2,5 \mathrm{~V} \\
& \mathrm{I}_{\mathrm{KAmin}}=1 \mathrm{~mA}
\end{aligned}
$$

Optocoupler: SFH617-3 (IC1)
Gc = 1 ... $2 \equiv$ CTR $100 \% ~ . . .200 \%$
$V_{F D}=1,2 \mathrm{~V}$
$\mathrm{I}_{\mathrm{Fmax}}=20 \mathrm{~mA}$ (maximum current limit)

Primary side:

Feedback voltage:
Values from ICE2AXXX datasheet
$V_{\text {Ref int }}=6,5 \mathrm{~V}$ typ.
$V_{\text {FBmax }}=4,5 \mathrm{~V}$
$\mathrm{Av}=3,65$
$R_{F B}=3,7 k$ typ.
$I_{F B \max }=\frac{V_{\operatorname{Re} f \mathrm{int}}}{R_{F B}}$
$I_{F B \min }=\frac{V_{\operatorname{Re} f \mathrm{int}}-V_{F B \max }}{R_{F B}}$

Secondary side:

$$
R_{1}=R_{2}\left(\frac{V_{O U T}}{V_{\text {REF }}}-1\right)
$$

(Eq 56)
the value of $R 2$ can be fixed at $4,3 \mathrm{k}$

$$
\begin{aligned}
& R_{3} \geq \frac{\left(V_{O U T}-\left(V_{F D}+V_{R E F}\right)\right)}{I_{F \max }} \\
& R_{4} \leq \frac{V_{F D}+\left(R_{3} \cdot \frac{I_{F B \min }}{G c}\right)}{I_{K A \min }}
\end{aligned}
$$

(Eq 57)

Fig. 13

Fig. 14
$I_{F B \text { min }}=\frac{6,5 \mathrm{~V}-4,6 \mathrm{~V}}{3,7 \mathrm{k} \Omega}=0,5 \mathrm{~mA}$
$R_{1}=4,3 k \cdot\left(\frac{16 V}{2,5 V}-1\right)=23,22 k$
$R_{3} \geq \frac{(16 V-(1,2 V+2,5 V))}{20 m A}=0,74 k \approx 0,75 \mathrm{k}$
$R_{4} \leq \frac{1,2 \mathrm{~V}+0,75 \mathrm{k} \cdot\left(\frac{0,5 m A}{1}\right)}{1 \mathrm{~mA}}=1,58 \mathrm{k} \approx 1,5 \mathrm{k}$

Regulation Loop Elements:

Fig. 15

Transfer Characteristics of Regulation Loop Elements:

$$
\begin{aligned}
& K_{F B}=\frac{G_{C} \cdot 3 k 7}{R 3} \\
& K_{V D}=\frac{R 2}{R 1+R 2}=\frac{V_{\text {REF }}}{V_{\text {OUT }}} \\
& F_{P W R}(p)=\frac{1}{Z_{P W M}} \cdot \sqrt{\frac{R_{L} \cdot L_{P} \cdot f \cdot \eta}{2}} \cdot\left(\frac{\left(1+p \cdot R_{E S R} \cdot C_{5}\right)}{\left(1+p \cdot\left(\frac{R_{L}}{2}+R_{E S R}\right) \cdot C_{5}\right)}\right) \\
& \mathrm{Z}_{\mathrm{PWM}}=\text { Transimpedance } \Delta \mathrm{V}_{\mathrm{FB}} / \Delta \mathrm{I}_{\mathrm{D}} \\
& F_{L C}(p)=\frac{1+p \cdot R_{E S R} \cdot C_{9}}{1+p \cdot R_{E S R} \cdot C_{9}+p^{2} \cdot L \cdot C_{9}} \\
& \operatorname{Fr}(p)=\frac{1+p \cdot R 5 \cdot(C 1+C 2)}{p \cdot \frac{R 1 \cdot R 2}{R 1+R 2} \cdot C 1 \cdot(1+p \cdot R 5 \cdot C 2)} \\
& \text { (Eq 59) Feedback } \\
& \text { (Eq 60) VoltageDivider } \\
& \text { (Eq 61) Powerstage } \\
& \text { (Eq 62) Output filter } \\
& \text { (Eq 63) Regulator }
\end{aligned}
$$

Zeros and Poles of transfer characteristics:

Poles of powerstage @ min. and max. load:

$$
\begin{array}{ll}
R_{L H}=\frac{V_{\text {OUT }}^{2}}{P_{\text {OUT } \max }}=\frac{16 V^{2}}{54 W}=4,9 \Omega & \text { (Eq 64) } \\
f_{O H}=\frac{1}{\pi \cdot R_{L H} \cdot C 5} & f_{\text {LL }}=\frac{V_{O U T}^{2}}{P_{\text {OUT } \min }}=\frac{16 V^{2}}{0,5 W}=512 \Omega \\
f_{O L}=\frac{1}{\pi \cdot 4,9 \Omega \cdot 2000 \mu F}=31,1 \mathrm{~Hz} \\
& f_{O L}=\frac{1}{\pi \cdot 512 \Omega \cdot 2000 \mu F}=0,31 \mathrm{~Hz} \tag{Eq67}
\end{array}
$$

We use the gain (Gc) of the optocoupler stage K_{FB} and the voltage divider K_{VD} as a constant.

$$
\begin{array}{ll}
K_{F B}=\frac{G_{C} \cdot 3 k 7}{R 3} & \mathrm{~K}_{\mathrm{FB}}=4,9
\end{array} \quad \Rightarrow \mathbf{G}_{\mathrm{FB}}=\mathbf{1 3 , 9 \mathrm { db }}
$$

With adjustment of the transfer characteristics of the regulator we want to reach equal gain within the operating range and to compensate the pole fo of the powerstage $\mathrm{F}_{\mathrm{PWR}}(\omega)$.

Because of the compensation of the output capacitor's zero (see page 22 Eq35, Eq36) we neglect it as well as the LC-Filter pole.

Consequently the transfer characteristic of the power stage is reduced to a single-pole response.
In order to calculate the gain of the open loop we have to select the cross-over frequency.
We calculate the gain of the Power-Stage with max. output power at the selected cross-over frequency
$\mathrm{fg}=3 \mathrm{kHz}$:

Calculation of transient impedance $\mathrm{Z}_{\text {pwm }}$ of ICE2AXXX

The transient impedance defines the direct relationship between the level of the peak current and the feedback pin voltage. It is required for the calculation of the power stage amplification. PWM-Op gain -Av $=3,65$ (according to datasheet)
$Z_{P W M}=\frac{\Delta V_{F B}}{\Delta I_{p k}}=A_{v} \cdot \frac{R_{\text {sense }}}{V_{\text {csth }}}$
(Eq 68)

$$
Z_{P W M}=\frac{\Delta V_{F B}}{\Delta I_{p k}}=3,65 \cdot \frac{0,43 \Omega}{1,00 \mathrm{~V}}=1,57 \frac{\mathrm{~V}}{\mathrm{~A}}
$$

Gain @ crossover frequency:

$\left|F_{P W R}(f g)\right|=\frac{1}{Z_{P W M}} \cdot \sqrt{\frac{R_{L} \cdot L_{p} \cdot f \cdot \eta}{2}} \cdot\left(\frac{1}{\sqrt{1+\left(\frac{f g}{f o}\right)^{2}}}\right)$
(Eq 69)
$\left|F_{P W R}(3 \mathrm{kHz})\right|=\frac{1}{1,7} \cdot \sqrt{\frac{5,1 R \cdot 235 \mu \mathrm{H} \cdot 100 \mathrm{kHz} \cdot 0,8}{2}} \cdot\left(\frac{1}{\sqrt{1+\left(\frac{3000}{31,1}\right)^{2}}}\right)=0,05$
$\Rightarrow \mathrm{G}_{\mathrm{PWR}}(3 \mathrm{kHz})=\mathbf{- 2 6 , 2 d b}$

Transfer characteristics:

Fig. 16

At the crossover frequency (fg) we calculate the open loop gain:
$\mathrm{G}_{\mathrm{ol}}(\omega)=\mathrm{Gs}(\omega)+\mathrm{Gr}(\omega)=0$.

With the equations for the transfer characteristics we calculate the gain of the regulation loop @fg.

For the gain of the regulation loop we calculate:
$G s=G_{F B}+G_{P W R}+G_{V D}=13,9 \mathrm{db}-26,2 \mathrm{db}-16,4 \mathrm{db}$
$G s=-28,7 d b$

We calculate the separate components of the regulator:
$\mathrm{Gs}(\omega)+\mathrm{Gr}(\omega)=0 \quad \Rightarrow \mathrm{Gr}=0-(-28,7 \mathrm{db})=\mathbf{2 8 , 7 d b}$

$$
\operatorname{Fr}(p)=\frac{1+p \cdot R 5 \cdot(C 1+C 2))}{p \cdot \frac{R 1 \cdot R 2}{R 1+R 2} \cdot C 1 \cdot(1+p \cdot R 5 \cdot C 2)}
$$

$$
G r=20 \cdot \log \frac{R 5 \cdot(R 1+R 2)}{R 1 \cdot R 2} \quad \Rightarrow \quad R 5=10^{\frac{G r}{20}} \cdot \frac{R 1 \cdot R 2}{R 1+R 2}
$$

$$
\begin{equation*}
R 5=10^{\frac{32,2}{20}} \cdot 3,65 k=99,15 k \approx \mathbf{1 0 0} \mathbf{k} \tag{Eq70}
\end{equation*}
$$

$f p=\frac{1}{2 \cdot \pi \cdot R 5 \cdot C 2} \quad \Rightarrow C 2=\frac{1}{2 \cdot \pi \cdot R 5 \cdot f g}$

$$
\begin{equation*}
C 2=\frac{1}{2 \cdot \pi \cdot 100 k \cdot 3 \mathrm{kHz}}=530 \mathrm{pF} \approx \mathbf{5 6 0} \mathrm{pF} \tag{Eq71}
\end{equation*}
$$

In order to have enough phase margin @ low load condition we select the zero frequency of the compensation network to be at the middle between the min. and max. load poles of the power stage.

$$
\begin{align*}
& f_{\text {om }}=f_{\text {oh }} \cdot 10^{0,5 \cdot \log \frac{f_{\text {ol }}}{f_{\text {oh }}}} f_{\text {om }}=31,1 \mathrm{~Hz} \cdot 10^{0,5 \cdot \log \frac{0,15}{31,1}}=3,2 \mathrm{~Hz} \\
& f z=\frac{1}{2 \cdot \pi \cdot R 5 \cdot(C 1+C 2)} \quad \Rightarrow C 1=\frac{1}{2 \cdot \pi \cdot R 5 \cdot f o m}-C 2 \\
& C 1=\frac{1}{2 \cdot \pi \cdot 100 \mathrm{k} \cdot 3,2 \mathrm{~Hz}}-560 \mathrm{pF}=492 \mathrm{nF} \approx 470 \mathrm{nF}
\end{align*}
$$

Open Loop Gain

Fig. 17

Open Loop Phase

Fig. 18

Continuous Conduction Mode (CCM)

Fig. 19

Transformer calculation:

The transformer is calculated in such a way that DCM operation is just barely reached $(A=0)$ at minimum output power $\mathrm{P}_{\text {omin }}$.
$\mathrm{Po}_{\text {min }}=2 \mathrm{~W}$
$\mathrm{Po}_{\max }=10 \mathrm{~W}$
$D_{\text {max }}=0,6$
$p=\frac{P o_{\text {max }}}{P o_{\text {min }}}$
$I p k=\frac{P o_{\min }+P o_{\text {max }}}{D_{\max } \cdot V_{d c \min } \cdot \eta}$
$L p=\frac{P o_{\max } \cdot(p+1)^{2} * D_{\text {max }}}{I p k^{2} \cdot f \cdot p}$

$$
p=\frac{10 W}{2 W}=5
$$

$I p k=\frac{2 W+10 \mathrm{~W}}{0,6 \cdot 100 \mathrm{~V} \cdot 0,8}=0,25 \mathrm{~A}$
$L p=\frac{10 \mathrm{~W} \cdot(5+1)^{2} * 0,6}{0,25^{2} \cdot 100 \mathrm{kHz} \cdot 5}=6,91 \mathrm{mH}$

Slope Compensation

Slope compensation is necessary for stable regulator operation in Continuous Conduction Mode (CCM), up to and beyond a duty cycle of 0.5 (see also [4]).
An simple method of slope compensation using the components R19, C17 and C18 is illustrated in the circuit diagram on page 3 .

Fig. 20
$\begin{array}{ll}V_{R}=n \cdot V o & n=\frac{n_{p}}{n_{s}} \\ m 2=\frac{n \cdot V o}{L_{p}}=\frac{V_{R}}{L_{p}} & m_{\text {korr }}=\frac{m 2}{2}=\frac{V_{R}}{2 \cdot L_{p}}\end{array}$

For duty cycle $=0,5$ applies:
$m_{\text {korr }}=\frac{V_{\text {FBkorr }}}{5 u s} \Rightarrow \quad V_{\text {FBkorr }}=\left(\frac{V_{R} \cdot 5 u s}{2 \cdot L_{p}}\right) \cdot Z_{P W M}$
$\mathrm{C}_{\text {comp }}$ (C17) is selected at 10 nF .
C18 is selected at 100 nF .
$R_{\text {Comp }}$ (R19):
$R_{\text {Comp }}=-\frac{t}{\ln \left(1-\frac{V_{\text {FBkorr }}}{V C C}\right) \cdot C_{\text {Comp }}}$ ICE2AXXX for OFF - Line Switch Mode Power Supplies

Transformer Construction

The winding topology has a considerable influence on the performance and reliability of the transformer.
In order to reduce leakage inductance and proximity to acceptable limits, the use of a sandwich construction is recommended. In order to meet international safety requirements a transformer for Off - Line power supply must have adequate insulation between primary and secondary windings.

This can be achieved by using a margin-wound construction or by using triple insulated wire for the secondary winding. The creepage distance for the universal input voltage range is typically 8 mm . This results in a minimum margin width (as a half of the creepage distance) of 4 mm . Additionally the neccesary insulation between primary and secondary winding is provided using three layers of basic insulation tape.

Example of winding topology for margin wound transformers:

Fig. 21

Example of winding topology with triple insulated wire for secondary winding:

Fig. 22
BW* : value from bobbin datasheet

Layout Recommendation:

Fig. 23

In order to avoid crosstalk on the board between power and signal path we have to use care regarding the track layout when designing the PCB.

The power path (see Fig. 23) has to be as short as possible and needs to be separated from the VCC Path and the feedback path. All GND paths have to be connected together at pin 8 (star ground) of ICE2AXX. ICE2AXXX for OFF - Line Switch Mode Power Supplies

CoolSET Table

DevICE	Package	Current A	Rdson Ω	$\begin{gathered} \text { Pout @ } \\ 190 \mathrm{Vacin} \\ \mathrm{Ta}=75^{\circ} \mathrm{C} / \mathrm{Tj}=125^{\circ} \mathrm{C} \end{gathered}$	Pout @ 85Vacin $\mathrm{Ta}=75^{\circ} \mathrm{C} / \mathrm{Tj}=125^{\circ} \mathrm{C}$	Heatsink	Frequency KHz
$\mathrm{V}_{\mathrm{DS}}=650 \mathrm{~V}$							
ICE2A0565	DIP8	0.5	6.0	23	13	$6 \mathrm{~cm}^{2}$	100
ICE2A0565Z	DIP7	0.5	6.0	21	12	$6 \mathrm{~cm}^{2}$	100
ICE2A165	DIP8	1.0	3.0	31	18	$6 \mathrm{~cm}^{2}$	100
ICE2B165	DIP8	1.0	3.0	31	18	$6 \mathrm{~cm}^{2}$	67
ICE2A265	DIP8	2.0	0.9	52	32	$6 \mathrm{~cm}^{2}$	100
ICE2B265	DIP8	2.0	0.9	52	32	$6 \mathrm{~cm}^{2}$	67
ICE2A365	DIP8	3.0	0.45	67	45	$6 \mathrm{~cm}^{2}$	100
ICE2B365	DIP8	3.0	0.45	73	45	$6 \mathrm{~cm}^{2}$	67
ICE2A765P	TO220	7.0	0.5	240	130	2.7 k/W	100
ICE2B765P	TO220	7.0	0.5	240	130	2.7 k/W	67
$\mathrm{V}_{\mathrm{DS}}=800 \mathrm{~V}$							
ICE2A180	DIP8	1.0	3.0	31	18	$6 \mathrm{~cm}^{2}$	100
ICE2A180Z	DIP7	1.0	3.0	29	17	$6 \mathrm{~cm}^{2}$	100
ICE2A280	DIP8	2.0	0.8	54	34	$6 \mathrm{~cm}^{2}$	100
ICE2A280Z	DIP7	2.0	0.8	50	31	$6 \mathrm{~cm}^{2}$	100

Output Power Notes:

The output power was created using the equations of this application note (see „Calculation of Losses" on page 27). It shows the maximum practical continuous power @ Ta $=75^{\circ} \mathrm{C}$ and $\mathrm{Tj}=125^{\circ} \mathrm{C}$ with the recommended heatsink as a copper area on PCB for DIP7 / 8 and PDSO14 packages.

ICE2AXXX for OFF - Line Switch Mode Power Supplies

Summary of used Nomenclature

$\mathrm{B}_{\text {max }}$	Magnetic Inductance	$\mathrm{P}_{\text {Son }}$	Switching losses of CoolmOS ${ }^{\text {™ }}$ Transistor (On -
BW	Bobbin Width	Operation)	
BWe	Effective Bobbin Width		
C_{IN}	Capacitance of Bulk Capacitor	$\mathrm{R}_{\text {Cu }}$	Copper Resistor (Transformer)
Cout	Output Capacitance	$\mathrm{R}_{\text {DSoN }}$	Resistance of switching CoolMOS™ Transistor (On
Coss	Output Capacitance of CoolMOS ${ }^{\text {™ }}$	- Operation)	
$\mathrm{C}_{\text {Extern }}$	Output Capacitance of external Components	R_{L}	Load - Resistance
$\mathrm{C}_{\text {clamp }}$	Capacitance of Clamping - Capacitor	$\mathrm{R}_{\text {LH }}$	Maximum Load
$\mathrm{C}_{\mathrm{vcc}}$	Capacitance of VCC - Capacitor	$\mathrm{R}_{\text {LL }}$	Minimum Load (defined by Designer)
D	Duty Cycle	$\mathrm{R}_{\text {FB }}$	Internal Feedback Resistor (CoolSET ${ }^{\text {m }}$)
$\mathrm{D}_{\text {max }}$	Maximum Duty Cycle	$\mathrm{R}_{\mathrm{PCu}}$	Copper Resistor of primary Inductance
f	Operating Frequency of CoolSET ${ }^{\text {TM }}$ ($\mathrm{f}=100 \mathrm{kHz}$)	$\mathrm{R}_{\text {SCu }}$	Copper Resistor of secondary Inductance
f_{AC}	Line Frequency (Germany $\mathrm{F}_{\text {AC }}=50 \mathrm{~Hz}$)	$\mathrm{R}_{\text {Clamp }}$	Clamping Resistor
f_{g}	Crossover Frequency	$\mathrm{R}_{\text {Start }}$	Start up Resistor
f_{Cu}	Copper Space Factor (0,2 .. 0,4)	T	Time of one Period
fOH	Frequency Open Loop (High)	T	Discharging Time of Input Capacitor C3
f_{Om}	Frequency Open Loop (middle)	ton	On Time (CoolMOS ${ }^{\text {™ }}$)
f_{OL}	Frequency Open Loop (Low)	$\mathrm{t}_{\text {OFF }}$	Off Time (CoolMOS ${ }^{\text {™ }}$)
$\mathrm{f}_{\text {zcout }}$	Zero Frequency of output Capacitor	t_{r}	Rising Time (Voltage)
G_{C}	Optocoupler Gain	$\mathrm{t}_{\text {Start }}$	Start up Time
$\mathrm{I}_{\text {FBmax }}$	Maximum Feedback Current	$V_{\text {AC min }}$	Minimal AC Input Voltage
$\mathrm{I}_{\text {FBmin }}$	Minimum Feedback Current	$\mathrm{V}_{\text {AC max }}$	Maximal AC Input Voltage
$\mathrm{I}_{\text {max }}$	Maximum Current (Optocoupler)	$V_{\text {Aux }}$	Auxiliary Voltage
$I_{\text {KAmin }}$	Minimum Current (TL431)	$V_{\text {(BR)DSs }}$	Drain Source Breakdown Voltage
$I_{\text {LoadC }}$	VCC - Capacitor Load - Current	$V_{\text {ccon }}$	Turn On Threshold for CoolSET ${ }^{\text {™ }}$ @ Vcc - Pin
ILPK	Peak Current through the primary Inductance	$V_{\text {DCIN }}$	DC Input Voltage
$\mathrm{I}_{\text {ACRMS }}$	Root Mean Square Current through the primary	$V_{\text {DCIN }}$ max	Maximum DC Input Voltage
Inductance		$V_{\text {DCIN } \text { min }}$	Minimum DC Input Voltage
$I_{\text {ACRMS }}$ Rectifier	Root Mean Square Current through the Bridge	$V_{\text {DC max }}$	Maximum DC Input Voltage Peak
Rectifier		$V_{\text {DC min PK }}$	Minimum DC Input Voltage Peak
$\mathrm{I}_{\text {PRI }}$	Primary Current @ time t	$V_{D C \text { min }}$	Minimum DC Input Voltage @ maximum load
$\mathrm{I}_{\text {SEC }}$	Secondary Current @ time t	V ${ }_{\text {diode }}$	Reverse Voltage rectifier Diode (secondary side)
$\mathrm{I}_{\text {SPK }}$	Peak Current through the secondary diode	$\mathrm{V}_{\text {FBmax }}$	Maximum Feedback Voltage (CoolSET ${ }^{\text {™ }}$)
$\mathrm{I}_{\text {SRMS }}$	RMS Current through the secondary diode	$V_{\text {FDIOde }}$	Output Diode Forward Voltage
$\mathrm{IVCC1}^{\text {IC) }}$	Maximum quiescent Current of CoolSET ${ }^{\text {TM }}$ (Control	$\mathrm{V}_{\text {FD }}$	Forward Diode Voltage (Optocoupler)
IC)		$V_{\text {OUT }}$	Output Voltage (secondary Side)
Lout	Inductance output Filter	$V_{\text {Out Ripple }}$	Output Ripple Voltage (secondary Side)
L_{P}	Primary Inductance	V_{R}	Reflected Voltage (from secondary side to primary
LLK	Leakage Inductance	side)	Reflected Voltage (rom secondary side to primary
M	Margin (of Transformer)	$V_{\text {RDiode }}$	Reverse Voltage Diode
$\mathrm{n}_{\text {CP }}$	Number of Clock Periods	$V_{\text {Refint }}$	Internal Reference Voltage (CoolSET ${ }^{\text {™ }}$)
$\mathrm{n}_{\text {pcout }}$	Number of parallel output Capacitors	$V_{\text {Ref }}$	Reference Voltage TL431
N_{P}	Number of primary Turns	$\mathrm{V}_{\text {Ripple }}$	DC Ripple Voltage (on primary Side)
N_{s}	Number of secondary Turns	$\mathrm{V}_{\text {SEC }}$	Voltage on Sekondary Inductor
$\mathrm{N}_{\text {Aux }}$	Number of auxiliary Turns	$\mathrm{V}_{\text {clamp }}$	Maximum Voltage overshoot @ clamping network
${ }^{\mathrm{P}} \mathrm{Cu}$	Power losses of Copper Resistor	$\mathrm{W}_{\text {IN }}$	Discharging Energie Input Capacitor
P_{D}	Conduction losses	$\mathrm{Z}_{\text {PWM }}$	Transimpedanz
$\mathrm{P}_{\text {din }}$	Power losses input Diode		Transimpedanz
P ${ }_{\text {diode }}$	Power losses rectifier Diode (secondary side)		
Pinmax	Maximum Input Power		
Pout max	Maximum Output Power		
Pout min	Minimum Output Power		
PPCu	Power losses of Copper Resistor (primary		
Inductance)			
Pscu	Power losses of Copper Resistor (secondary		
Inductance)			
$\mathrm{P}_{\text {SOFF }}$	Switching losses of CoolMOS ${ }^{\text {TM }}$ Transistor (Off -		
Operation)			

ICE2AXXX for OFF - Line Switch Mode Power Supplies

References

[1] Keith Billings,
Switch Mode Power Supply Handbook
[2] Ralph E. Tarter,
Solid-State Power Conversion Handbook
[3] R. D. Middlebrook and Slobodan Cuk, Advances in Switched-Mode Power Conversion
[4] Herfurth Michael,
Ansteuerschaltungen für getaktete Stromversorgungen mit Erstellung eines linearisierten Signalflußplans zur Dimensionierung der Regelung
[5] Herfurth Michael,
Topologie, Übertragungsverhalten und Dimensionierung häufig eingesetzter Regelverstärker
[6] Infineon Technologies, Datasheet,
CoolSET-II
Off - Line SMPS Current Mode Controller with 650V/800V CooIMOS ${ }^{\text {™ }}$ on Board,
[7] Robert W. Erickson,
Fundamentals of Power Electronics

ICE2AXXX for OFF - Line Switch Mode Power Supplies

Revision History			
Application Note AN-SMPS-ICE2AXXX-1			
Actual R	ase: V1.2	Date:05.02.2002	Previous Release: V1.0
Page of actual Rel.	Page of prev. Rel.	Subjects changed since last release	
44	----------	Second Issue	
40	------------	CoolSET Table Update	

For questions on technology, delivery and prices please contact the Infineon Technologies Offices in Germany or the Infineon Technologies Companies and Representatives worldwide: see the address list on the last page or our webpage at http://www.infineon.com

CoolMOS ${ }^{\text {TM }}$ and CoolSET ${ }^{\text {TM }}$ are trademarks of Infineon Technologies AG.

```
We listen to Your Comments
Any information within this dokument that you feel is wrong, unclear or missing at all?
Your feedback will help us to continously improve the quality of this dokument.
Please send your proposal (including a reference to this dokument) to:
mcdoku.comment@infineon.com
```


Edition 2001-03-01

Published by Infineon Technologies AG,
St.-Martin-Strasse 53,
D-81541 München
© Infineon Technologies AG 2000.
All Rights Reserved.

Attention please!

The information herein is given to describe certain components and shall not be considered as warranted characteristics.
Terms of delivery and rights to technical change reserved.
We hereby disclaim any and all warranties, including but not limited to warranties of non-infringement, regarding circuits, descriptions and charts stated herein.
Infineon Technologies is an approved CECC manufacturer.

Information

For further information on technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies Office in Germany or our Infineon Technologies Representatives worldwide (see address list).

Warnings

Due to technical requirements components may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies Office.
Infineon Technologies Components may only be used in life-support devices or systems with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system, or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body, or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.

Infineon Technologies AG sales offices worldwide -

partly represented by Siemens AG

A	F	J J	RC
Siemens AG Österreich	Infineon Technologies France,	Siemens Components K.K.	Infineon Technologies
Erdberger Lände 26	39/47,Bd.Ornano	Talanawa Park Tower 12F \& 17F	Asia Pacific Pte.Ltd.
A-1031 Wien	F-93527 Saint-Denis CEDEX2	3-20-14,Higashi-Gotanda,	Taiwan Branch
T (+43)1-17 07-3 5611	T (+33)1-49 223100	Shinagawa-ku	10F,No. 136 Nan King East Road
Fax (+43)1-17 07-5 5973	Fax (+33)1-49 222801	Tokyo	Section 23, Taipei
AUS	FIN	T (+81)3-54 496411	T (+8 86)2-27 736606
Siemens Ltd.	Siemens Components	Fax (+81)3-54 496401	Fax (+8 86)2-27 712076
885 Mountain Highway	Scandinavia	MAL	SGP
Bayswater,Victoria 3153	P.O.Bo $\times 60$	Infineon Technologies AG	Infineon Technologies Asia
T (+61)3-97 212111	FIN-02601 Espoo (Helsinki)	Sdn Bhd	Pacific,Pte.Ltd.
Fax (+61)3-97 217275	T (+3 58)10-5 115151	Bayan Lepas Free Industrial Zone1	168 Kallang Way
B	Fax (+3 58)10-5 112495	11900 Penang	Singapore 349253
Siemens Electronic Components	Email:	T (+60)4-6449975	T (+65)8 400610
Benelux	scs@components.siemens.se	Fax (+60)4-6 414872	Fax (+65)7 426239
Charleroisesteenweg 116/	GB	N	USA
Chaussée de Charleroi 116	Infineon Technologies	Siemens Components	Infineon Technologies Corporation
B-1060 Brussel/Bruxelles	Siemens House	Scandinavia	1730 North First Street
T (+32)2-5 366905	Oldbury	Østre Aker vei 24	San Jose, CA 95112
Fax (+32)2-5 362857	GB-Bracknell,Berkshire	Postboks 10,Veitvet	T (+1)4 08-5 016000
Email:components@siemens.nl	RG12 8FZ	N-0518 Oslo	Fax (+1)4 08-5 012424
BR	T (+44)13 44-39 6618	T (+47)22-63 3000	Siemens Components, Inc.
Siemens Ltda.	Fax (+44)13 44-39 6632	Fax (+47)22-68 4913	Optoelectronics Division
Semiconductores		Email:	19000 Homestead Road
Avenida Mutinga,3800-Pirituba	Simacomp Kft.	scs@components.siemens.se	Cupertino,CA 95014
05110-901 São Paulo-SP	Lajos u. 103		T (+1)4 08-2 577910
T (+55)11-39 082564	H-1036 Budapest	Siemens Electronic Components	Fax (+1)4 08-7 253439
Fax (+55)11-39 082728	T (+36)1-4 571690	Benelux	Siemens Components,Inc.
CDN	Fax (+36)1-4 571692	Postbus 16068	Special Products Division
Infineon Technologies Corporation		NL-2500 BB Den Haag	186 Wood Avenue South
320 March Road, Suite 604	Infineon Technologies	T (+31)70-3 332065	Iselin,NJ 08830-2770
Canada, Ontario K2K 2E2	Hong Kong Ltd.	Fax (+31)70-3 332815	T (+1)7 32-9 064300
T (+1)6 13-5 916386	Suite 302,Level 3,	Email:components@siemens.nl	Fax (+1)7 32-6 322830
$\underset{\text { CH }}{\mathrm{Fax}}(+1) 6$ 13-5 916389	Festival Walk,		VRC
CH Siemens Schweiz AG	80 Tat Chee Avenue,	Siemens Auckland	Infineon Technologies
Bauelemente	Yam Yat Tsuen,	300 Great South Road	Hong Kong Ltd.
Freilagerstrasse 40	Hong Ko	Areenland	Beijing Office
CH-8047 Zürich	T (+8 52)28 320500	T (+64)9-5 203033	Vantone New World Plaza
T (+41)1-4 953065	Fax (+8 52)28 279762	Fax (+64)9-5 201556	No. 2 Fu Cheng Men Wai Da Jie
Fax (+41)1-4 955050	1	P	
Infineon Technologies AG	Siemens S..A.	Siemens S.A.	100037 Beijing
Völklinger Str. 2	Via Piero e Alberto Pirelli,10	an Componentes Electronicos R Irmaos Siemens, 1	T (+86)10-68 $5790-06,-07$
D-40219 Düsseldorf	I-20126 Milano	Alfragide	Fax (+86)10-68 579008
T (+49)2 11-3 992930	T (+39)02-66 76 -1	P-2720-093 Amadora	Infineon Technologies
Fax (+49)2 11-3 991481	Fax (+39)02-66 764395	T (+351)1-4 178590	Hong Kong Ltd. Chengdu Office
Infineon Technologies AG	IND	Fax (+351)1-4 178083	Chengdu Office Room14J1 Jinyang Mansion
Werner-von-Siemens-Platz 1	Siemens Ltd.	PK	Room14J1,Jinyang Mansion
D-30880 Laatzen (Hannover)	Components Division	Siemens Pakistan Engineering	58 Tidu Street
T (+49)5 11-8 772222	No. 84 Keonics Electronic City	Co.Ltd.	Chengdu,
Fax (+49)5 11-8 771520	Hosur Road	PO Box 1129, Islamabad 44000	Sichuan Province 610016
Infineon Technologies AG	Bangalore 561229	23 West Jinnah Ave	T (+86)28-6 $615446 / 7951$
Von-der-Tann-Straße 30	T (+91)80-8 521122	Islamabad	Fax (+86)28-6 610159
D-90439 Nürnberg	Fax (+91)80-8 521180	T (+92)51-21 2200	Infineon Technologies
T (+49)9 11-6 547699	Siemens Ltd.	Fax (+92)51-21 1610	Hong Kong Ltd.
Fax (+49)9 11-6 547624	CMP Div,5th Floor		Shanghai Office
Infineon Technologies AG	4A Ring Road, IP Estate	Siemens SP.z.o.o.	Room1101,Lucky Target Square
Weissacher Straße 11	New Delhi 110002	ul.Zupnicza 11	No. 500 Chengdu Road North
D-70499 Stuttgart	T (+91)11-3 319912	PL-03-821 Warszawa	Shanghai 200003
T (+49)7 11-1 373314	Fax (+91)11-3 319604	T (+48)22-8 709150	T (+86)21-63 $612618 / 19$
Fax (+49)7 11-1 372448	Siemens Ltd.	Fax (+48)22-8 709159	Fax (+86)21-63 611167
	CMP Div,4th Floor	ROK	Infineon Technologies
Infineon Technologies AG	130,Pandurang Budhkar Marg,	Siemens Ltd.	Hong Kong Ltd.
Halbleiter Distribution	Worli	Asia Tower,10th Floor	Shenzhen Office
Richard-Strauss-Straße 76	Mumbai 400018	726 Yeoksam-dong,Kang-nam Ku	Room 1502,Block A
D-81679 München	T (+91)22-4 962199	CPO Box 3001	Tian An International Building
T (+49)89-92 214086	Fax (+91)22-4 962201	Seoul 135-080	Renim South Road
Fax (+49)89-92 212071	IRL	T (+82)2-5 277700 Fax (+82)2-5 277779	Shenzhen 518005
DK ${ }_{\text {Siemens A/S }}$	Siemens Ltd.	Fax (+82)2-5 277779	T (+86)755-2 289104
Siemens A/S Borupvang 3	Electronic Components Division	INTECH electronics	Fax (+86)7 55-2 280217
Borupvang 3 DK-2750 Ballerup	8,Raglan Road IRL-Dublin 4	ul.Smolnaya,24/1203	Siemens Ltd.
T (+45)44 77-44 77	T (+3 53) 1-2 162342	RUS-125 445 Moskva	Components Division
Fax (+45)44 77-40 17	Fax (+3 53) 1-2 162349	T (+7)0 $95-4519737$	P.O.B. 3438
	IL	Fax (+7)0 95-4 518608	Halfway House 1685
Siemens S.A.	Nisko Ltd.		$\mathrm{T}(+27) 11-652-2702$
Dpto.Componentes	2A,Habarzel St.	Siemens Components Scandinavia	$\text { Fax (+27)11-6 } 522042$
Ronda de Europa,5	P.O.Box 58151	Osterögatan 1,Box 46	
E-28760 Tres Cantos-Madrid	61580 Tel Aviv -Isreal	S-164 93 Kista	
T (+34)91-5 147151	$\text { T (+9 72)3-7 } 657300$	T (+46)8-7 033500	
Fax (+34)91-5 147013	Fax (+9 72) 3-765 7333	Fax (+46)8-7 033501 Email: scs@components.siemens.se	

