

Title	PLC810PG based 414W PSU for Lead Battery Charger
Specification	140 VAC to 290 VAC Input 418 W Total Output Power 5 V _{SB} at 1 W 12 V _{SB} at 3 W 41.4 V at 414 W
Application	Battery Charger
Author	EISEA Greenhouse Team
Document Number	
Date	May 11, 2009
Revision	0.1

Summary and Features

- Wide input voltage range 140-290VAC
- Uses integrated PFC and LLC controller PLC810
- Power factor corrected.
- Typical total efficiency 92%.
- Constant voltage and constant current output.
- Brownout shutdown circuit included
- Standby power of 0.5W output power available with <1W input power
- No-load input power < 250 mW @230 VAC

PATENT INFORMATION

The products and applications illustrated herein (including transformer construction and circuits external to the products) may be covered by one or more U.S. and foreign patents, or potentially by pending U.S. and foreign patent applications assigned to Power Integrations. A complete list of Power Integrations' patents may be found at www.powerint.com. Power Integrations grants its customers a license under certain patent rights as set forth at <htp://www.powerint.com/ip.htm>.

> Power Integrations 5245 Hellyer Avenue, San Jose, CA 95138 USA. Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com

1 Table of Contents

1	Table of	Contents	2
2	Introduc	tion	4
3	Power S	Supply Specification	5
4		tic	
5	Circuit D	Description	11
	5.1 Inp	ut Filter/Boost Converter	11
	5.1.1	EMI Filtering	11
	5.1.2	Inrush limiting	11
	5.1.3	Main PFC Stage	11
	5.2 Mai	n LLC Output	11
	5.2.1	LLC Input Stage	12
	5.2.2	LLC Output	12
	5.3 Cor	ntroller	12
	5.3.1	PFC Control	12
	5.3.2	Bypassing/Ground Isolation	12
	5.3.3	LLC Control	12
	5.4 LLC	Secondary Control Circuits	13
	5.4.1	Voltage and Current Feedback	13
	5.5 Flyt	back Power Supply	13
	5.5.1	5V/12V Flyback Supply	13
	5.5.2	Primary Bias regulator/Remote Start	13
	5.5.3	Brownout Shutdown Circuit	14
P	CB Layout		15
6		aterials	
7	Main LL	C Transformer (T2) Specification	23
		ctrical Diagram	
	7.2 Ele	ctrical Specifications	23
8	Flyback	Transformer (T1)	24
	8.1 Ele	ctrical Diagram	24
	8.2 Ele	ctrical Specifications	24
	8.3 Mat	erials	24
		d Diagram	
	8.5 Cor	nstruction	25
9	PFC Ch	oke Specification (L4)	26
	9.1 Ele	ctrical Diagram	26
	9.2 Ele	ctrical Specification	26
	9.3 Mat	erials	26
	9.4 Buil	d Diagram	26
	9.5 Wir	ding Instructions	27
10		Spreadsheet	
11	Perfo	mance Data	
	11.1.1	Composite Efficiency	
	11.2 Sta	ndby Load Input Power	34

11.2.1 No-Load Input Power	34
11.3 CV/CC Regulation	
11.4 Power Factor and Total Harmonic Distortion	
12 Thermal Performance	37
12.1 Operating Temperature Survey	37
13 Waveforms	
13.1 Input Voltage and Current	
13.2 LLC Resonating Capacitor Voltage and Current, Normal Operation	39
13.3 PFC Stage Voltage and Current – Normal Operation	39
13.4 AC Input Current and PFC Output Voltage - Startup	40
13.5 LLC Startup	40
13.6 Output Voltage during Startup and Shutdown	41
13.6.1 LLC Output	41
13.7 Output Ripple Measurements	42
13.7.1 Ripple Measurement Technique	42
13.7.2 24V Ripple Measurement Results	43
14 Conducted EMI	44
15 Revision History	46

Important Note:

Although this board is designed to satisfy safety isolation requirements, the engineering prototype has not been agency approved. Therefore, all testing should be performed using an isolation transformer to provide the AC input to the prototype board.

2 Introduction

This engineering report describes a 414 W extended European-input power supply for Lead Battery Charger applications. This reference design is based on the PLC810.

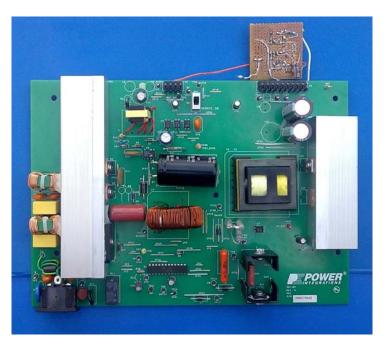


Figure 1 – Lead Battery Charger Board Top.

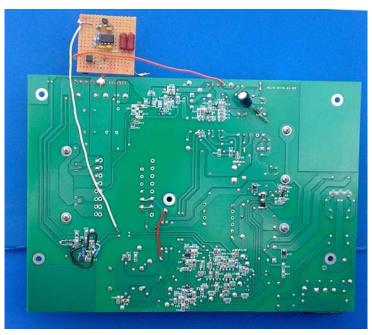


Figure 2- Lead Battery Charger Board Bottom

3 Power Supply Specification

Description	Symbol	Min	Тур	Max	Units	Comment
Input Voltage Frequency Power Factor	V _{IN} f _{LINE} PF	140 47 0.95	50/60	290 64	VAC Hz	3 wire input Full Load, 230 VAC
No-load Input Power (230 VAC)	FF	0.95		250	mW	Remote off, no load condition,
Available Standby Output Power	P _{IN(1 W)}		0.5		W	For 1 W input power at 230 VAC
Auxiliary Outputs Standby Output Voltage Standby Output Ripple Voltage Standby Output Current	V _{aux1} V _{RIPPLE(aux1)} I _{OUT(aux1)}		5 0.2	50	V mV A	± 5% 20 MHz bandwidth
Standby Output Voltage Standby Output Ripple Voltage Standby Output Current	V _{aux2} V _{RIPPLE(aux2)} I _{OUT(aux2)}		12 0.3	50	V mV A	± 15% 20 MHz bandwidth
Main Converter Output						
Output Voltage	Vo		41.4		V	+/-5%
Output Ripple				400	mV	20 MHz bandwidth
Output Current	l _o		10		А	+/-10%
Total Output Power Continuous Output Power	Р _{оит}	418			W	Auxiliary + Main
Efficiency						
Main at Full Load	η _{Main}		92		%	Measured at 230 VAC
Environmental Conducted EMI Safety Surge Differential Common Mode 100 kHz Ring Wave		2 4 4	Des			/ EN55022B 0 / UL1950 Class II 1.2/50 μs surge, IEC 1000-4-5, Differential Mode: 2 Ω Common Mode: 12 Ω 500 A short circuit current
Ambient Temperature	Т _{АМВ}	0		50	°C	Free convection, sea level, long side of board is oriented vertically, AC inlet on bottom edge

4 Schematic

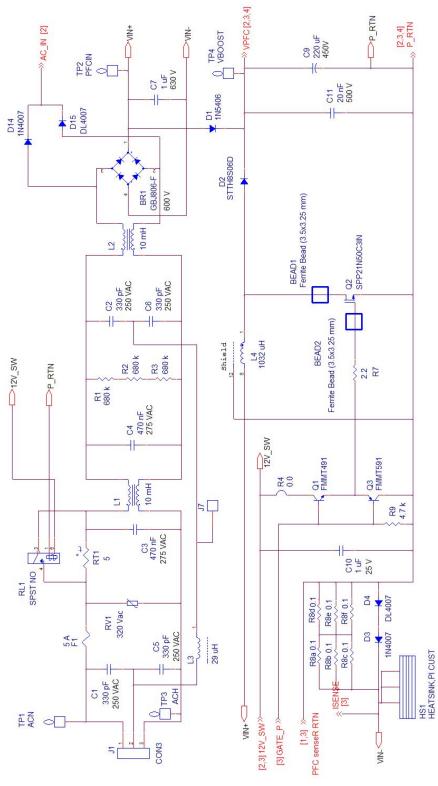
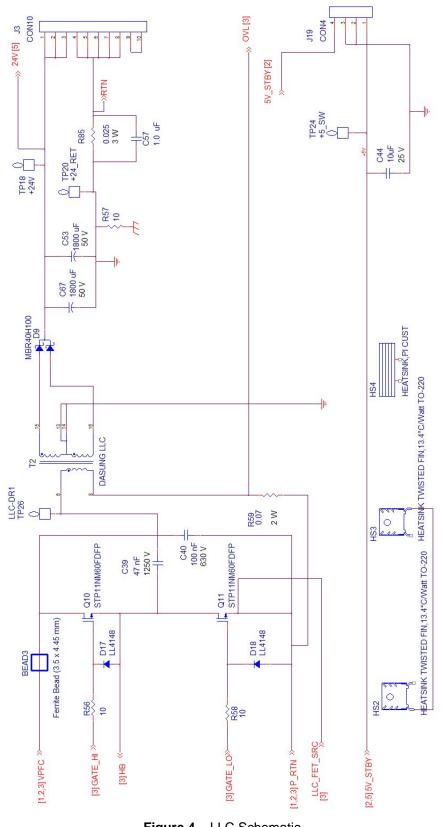



Figure 3 – Input/Boost Schematic

PLC810PG based 414W PSU for Lead Battery Chargers

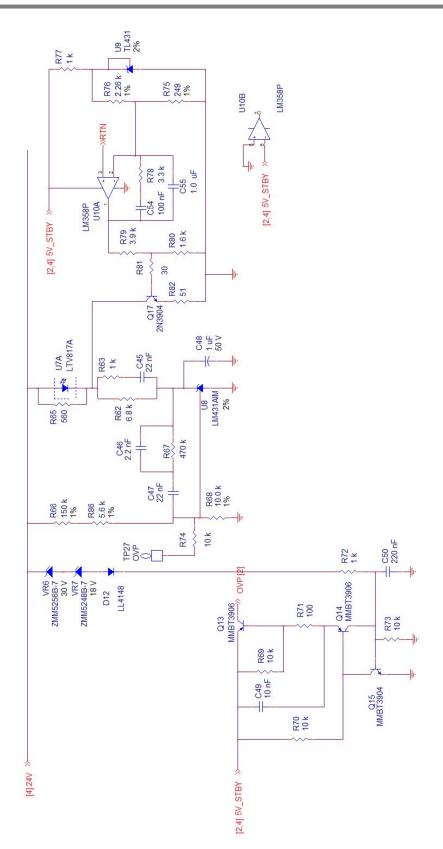
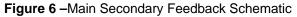




Figure 5 – Controller Circuit Schematic

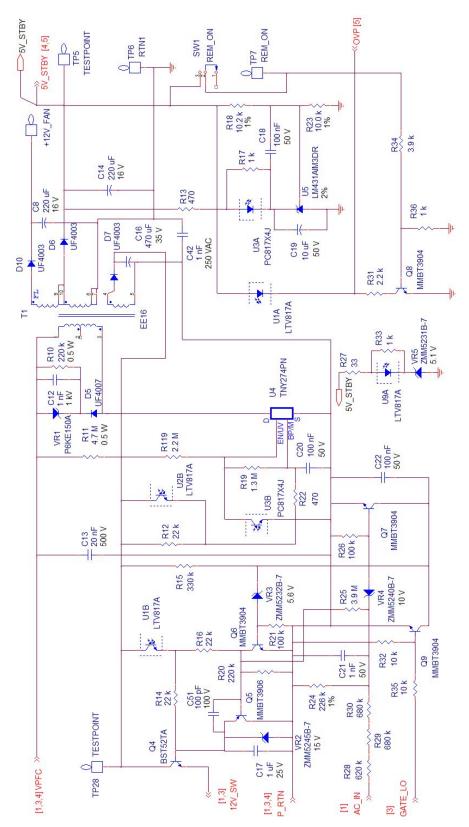


Figure 7 – Flyback Supply Schematic

5 Circuit Description

This circuit uses the PLC810 in a primary-side PFC + LLC configuration.

5.1 Input Filter/Boost Converter

The schematic in Figure 3 shows the input RFI filter and main PFC stage.

5.1.1 EMI Filtering

Capacitors C1 and C5 are connected directly across the pins of input receptacle J1 and are used to control common mode noise at frequencies greater than 30MHz. A 5-turn ferrite bead inductor (L3) is used to connect the safety ground from J1 to chassis ground, providing damping at frequencies >30MHz. Common mode inductors L1 and L2 control EMI at low frequencies and the mid-band (~10 MHz), respectively. Capacitors C2 and C6 control resonant peaks in the mid-band (~10 MHz) region.

PFC inductor L4 has a grounded shield band to prevent electrostatic and magnetic noise coupling to the EMI filter components. Capacitors C3 and C4 provide differential mode EMI filtering. To meet safety requirements resistors R1, R2 and R3 discharge these capacitors when AC is removed. The heat sink for PFC switch FET Q2 and PFC output diode D2 is tied to primary return at the cathode of D3 to eliminate the heat sink as a source of radiated noise.

5.1.2 Inrush limiting

Thermistor RT1 provides inrush limiting. It is shorted by a relay (RL1) gated by the power supply remote on signal, increasing efficiency by approximately 1-1.5%.

5.1.3 Main PFC Stage.

Components C9, C11, L4, Q2, and D2 form a continuous mode power factor correction circuit. Components Q1, Q3, R4, R9 and bead 2 buffer the PWM drive signal for Q2 from the PLC810 controller. Resistor R4 allows the turn-on speed and R7 the turn-off speed of Q2 to be adjusted to optimize the losses between D2 and Q2. In this design it was found that efficiency and EMI were both improved by reducing the value of R4 and R7 and adding ferrite beads to the gate and drain of Q2 (bead 2 and bead 1 respectively). In general, increasing MOSFET turn on drive current reduces MOSFET switching losses but increases the reverse recovery current through D2 and associated ringing. An ultra fast diode was selected for D2 as a lower cost alternative to a silicon carbide or other proprietary diode technology. These may provide higher efficiency by reducing reverse recovery charge, but significantly increase solution cost.

5.2 Main LLC Output

The Figure 4 schematic shows the LLC converter stage.

5.2.1 LLC Input Stage

MOSFETs Q10 and Q11 are the switch MOSFETs for the LLC converter. They are driven directly by the controller IC via resistors R56 and R58. Capacitor C39 is the primary resonating capacitor, and should be a low-loss type rated for the RMS current at maximum load. Capacitor C40 is used for local bypassing, and is positioned adjacent to Q10 and Q11. Resistor R59 provides primary current sensing to the controller for overpower protection.

5.2.2 LLC Output

The secondaries of transformer T2 are rectified and filtered by D9, C53 for the 13.8V output. No inductive filters are needed. Resistor R57 is connected between secondary return and chassis ground for high frequency EMI damping, as well as to tie the secondary return to chassis ground.

5.3 Controller

Figure 5 shows the circuitry around the U6 main controller IC, which provides control functions for the input PFC and output LLC stages.

5.3.1 PFC Control

The PFC boost stage output voltage is fed back to the boost voltage sense pin (FBP of U6) via resistors R39-41, R43, R46, and R50, R49. Capacitor C25 filters noise. Components C26, C28 and R48 provide frequency compensation for the PFC. The PFC current sense signal from resistors R8 is filtered by R45 and C24. The PFC drive signal from the GATEP pin is routed to the main switching FET via R44. This damps any ringing in the PFC drive signal caused by the trace length from U6 to PFC switch MOSFET Q2.

5.3.2 Bypassing/Ground Isolation

Capacitors C29, C31, and C32 provide supply bypassing for the analog and digital supply rails for U6. Resistor R55 and ferrite bead L7 provide ground isolation between the PFC and LLC ground systems. Resistors R37 and R38 isolate the IC analog and digital supply rails. Ferrite bead L6 provides high frequency isolation between the LLC stage high side MOSFET drive return and the controller IC.

5.3.3 LLC Control

Feedback from the LLC output sense/feedback circuit is provided by U7, which develops a feedback voltage across resistor R54. Capacitor C36 filters the feedback signal. Resistors R49, R51, and R53 set the lower frequency limit for the LLC converter stage. Capacitor C27 is used to provide output soft start. Resistor R52, R36 set the LLC upper frequency limit. Capacitor C30 is a noise filter. The LLC overload sense signal from resistor R59 is filtered by R47 and C35. Components C23, R42, and D8 provide bootstrapping for the LLC top side MOSFET drive.

5.4 LLC Secondary Control Circuits

Figure 6 shows the secondary control schematic for the LLC stage.

5.4.1 Voltage and Current Feedback

The LLC converter 13.8V output is sensed, by voltage divider R66, R68 driving the shunt reference U8. Optocoupler U7 is transferring the feedback signal to primary side.

Resistors R72, R73. VR7 and D13 sense any overvoltage condition. The overvoltage signal is used to trigger a bipolar latch (Q14, Q15, R70, R73), which turns on transistor Q13. This transistor is used to deactivate the remote-on circuit (Figure 5), which turns off the primary bias, and hence the main controller IC.

The output current is sensed by resistor R85. The voltage drop across this resistor is then compared by U10 against a reference voltage created by U9, and R75, R76. This creates a 10A constant current output.

5.5 Flyback Power Supply

The schematic in Figure 7 shows the flyback standby and bias supply implemented using a TNY274PN. It is a dual output power supply with a +5V and a +12V output. The +5V output is meant to supply a μ Controller, the +12V output is meant to drive a small DC fan.

It also provides a primary referenced output used to supply the power for the PLC810PG controller IC. The schematic also shows the primary bias regulator, remote start, and brown-in/brown-out protection circuits.

5.5.1 5V/12V Flyback Supply

Components VR1, R10, C12, and D5 clamp the primary leakage spike. This Zener-type clamp was selected over a RCD type for low standby power consumption. Resistor R11-R119 set the standby supply turn-on threshold to approximately 110 VAC. Components VR5, U2, R27, and R33 are used for overvoltage shutdown protection during an open loop fault condition. Components U3, U5, R13, R17, R18, R23, C18 and C19 are the secondary output sensing and feedback components.

Capacitor C13 is used for local primary bypassing for the flyback converter. Resistor R12 provides sufficient bias to U3 to turn off its internal HV bias supply, reducing low load and no-load power consumption. Capacitor C42 reduces common mode EMI.

5.5.2 Primary Bias regulator/Remote Start

Components Q4, Q5, Q6, VR2, U1, C17, C51 R14, R16, R20, and SW1 constitute the bias regulator and remote on-off functions. Darlington transistor Q4, R14, and VR2 form a simple emitter-follower voltage regulator that is switched via optocoupler U1. Capacitor C17 limits the rate of rise of the bias voltage to avoid triggering the current limit of the standby supply. Components Q5, C51, and R20 quickly discharge C17 when optocoupler U1 is turned off.

Optocoupler U1 is turned on and off by Q8, SW1, R34, and R36. The supply can also be turned on by shorting test points TP5 and TP7.

5.5.3 Brownout Shutdown Circuit

A brownout shutdown circuit is provided. This circuit operates by sensing the AC input voltage and the presence of a switching signal from the LLC controller. When the power supply is operating, the absence of both of these signals, indicating insufficient AC input voltage and insufficient B+ voltage at the input to the LLC converter stage will cause the supply to shut down by switching off the primary bias regulator.

Components R24, R26, R28-30, C21, VR4, and Q7 are used to sense The AC input voltage. The voltage threshold of this circuit is set below the turn-on threshold of the standby/primary bias converter. Sufficient AC voltage triggers Q7, discharging capacitor C22, which is charged via R15. Resistor R25 provides some hysteresis to prevent chattering around the AC threshold voltage. Components R32, R35, and Q9 sense the switching drive from the lower output FET of the LLC converter. Transistor Q9 discharges capacitor C22 when the switching signal is present.

When the input voltage is sufficiently low, Q7 and Q9 turn off, allowing C22 to charge. Components Q6, R21, and VR3 sense the voltage at C22. When C22 has charged sufficiently, Q6 turns on, turning off the primary bias supply via Q4 and Q5, shutting down the PFC and LLC stages.

PCB Layout

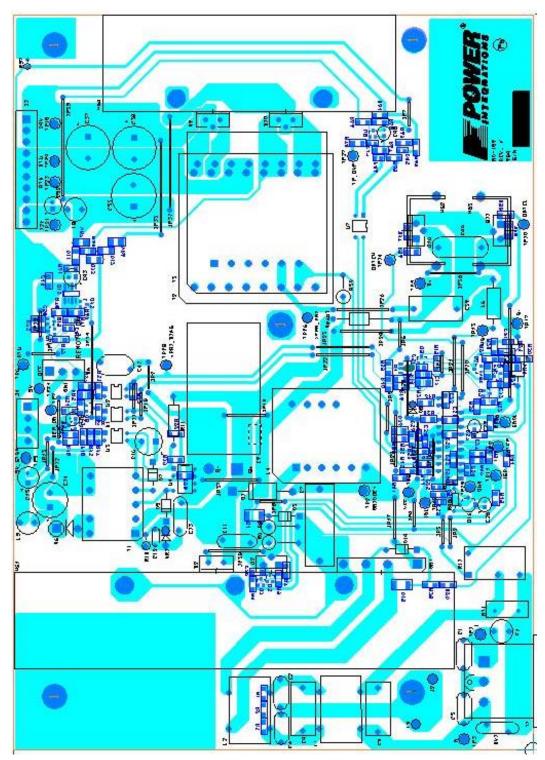


Figure 8 – Printed Circuit Layout.

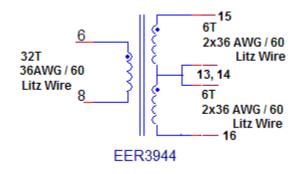
6 Bill of Materials

Item	Qty	Part Reference	Description	Mfg Part Number	Mfg
			3.5 mm D x 3.25 L mm,		
			21 Ohms at 25 MHz, 1.6mm (.063) hole,		
1	2	BEAD1 BEAD2	Ferrite Bead	2643001501	Fair-Rite
			3.5 mm x 4.45 mm, 68		
			Ohms at 100 MHz, 22		
2	3	BEAD3 L6 L7	AWG hole, Ferrite Bead	2743001112	Fair-Rite
			600 V, 8 A, Bridge		
3	1	BR1	Rectifier, GBJ Package	GBJ806-F	Diodes Inc
4	4	C1 C2 C5 C6	330 pF, Ceramic Y1	440LT33-R	Vishay
5	2	C3 C4	470 nF, 275 VAC, Film, X2	PX474K31D5	Carli
5	2	03.04	1 uF, 630 V,	F X474K31D3	Carli
6	1	C7	Polypropylene Film	ECW-F6105HL	Panasonic
			220 uF, 16 V,		
7	1	C8	Electrolytic, Low ESR		
			220 uF, 450 V,		
8	1	C9	Electrolytic, (25 x 45)	ECO-S2WP221CX	Panasonic
0	•	C10 C17 C23 C27	1 uF, 25 V, Ceramic,		. .
9	6	C31 C33	X7R, 1206	ECJ-3YB1E105K	Panasonic
10	2	C11 C13	20 nF, 500 V, Disc Ceramic	D203Z59Z5UL63L0R	Vishay/BC
10	2	011013	1 nF, 1 kV, Disc	D203239230E03E01	visitay/bC
11	1	C12	Ceramic	DEBE33A102ZC1B	Murata
		012	220 uF, 10 V,		marata
			Electrolytic, Very Low		
13	1	C14	ESR		
			470 uF, 35 V,		
		0.10	Electrolytic, Low ESR,		Nippon Chemi-
14	1	C16	52 mOhm, (10 x 20)	ELXZ350ELL471MJ20S	Con
15	4	C18 C20 C22 C32	100 nF, 50 V, Ceramic, X7R, 1206	ECJ-3VB1H104K	Panasonic
15	-	010 020 022 032	10 uF, 50 V, Electrolytic,		Nippon Chemi-
16	3	C19 C26 C29	Gen. Purpose, (5 x 11)	EKMG500ELL100ME11D	Con
_	-	C21 C24 C30 C34	1 nF, 50 V, Ceramic,		
17	6	C35 C36	X7R, 0805	ECJ-2VB1H102K	Panasonic
			10 nF, 50 V, Ceramic,		
18	2	C25 C49	X7R, 0805	ECJ-2VB1H103K	Panasonic
	_		22 nF, 50 V, Ceramic,		
19	3	C28 C45 C47	X7R, 0805	ECJ-2VB1H223K	Panasonic
20	1	C39	47 nF, 630 V, Film	BFC2 375 14473	Vishay
21	1	C40	100 nF, 630 V, Film	ECQ-E6104KF	Panasonic
22	1	C42	1 nF, Ceramic, Y1	440LD10-R	Vishay
	4	C11	10 uF, 25 V, Ceramic,		Danagania
23	1	C44	X7R, 1206 2.2 nF, 50 V, Ceramic,	ECJ-3YB1E106M	Panasonic
24	1	C46	2.2 nF, 50 V, Ceramic, X7R, 0805	ECJ-2VB1H222K	Panasonic

					1
			1800 uF, 50 V, Electrolytic, Very Low		Nippon Chemi-
25	2	C67 C53	ESR	KY series	Con
20		007 000	1 uF, 50 V, Electrolytic,		Nippon Chemi-
26	1	C48	Gen. Purpose, (5 x 11)	EKMG500ELL1R0ME11D	Con
		• • •	220 nF, 25 V, Ceramic,		
27	1	C50	X7R, 1206	ECJ-3VB1E224K	Panasonic
			100 pF, 100 V, Ceramic,		
28	1	C51	COG, 0805	C0805C101J1GACTU	Kemet
			100 nF, 50 V, Ceramic,		
29	1	C54	X7R	B37987F5104K000	Epcos
20	2		1.0 uF, 50 V, Ceramic,	DOZODANE ADEKODO	F
30	2	C55 C57	X7R 600 V, 3 A, Recitifier,	B37984M5105K000	Epcos
31	1	D1	DO-201AD	1N5406	Vishay
01			600 V, 8 A, Ultrafast		violidy
			Recovery, 12 ns, TO-		ST
32	1	D2	220AC	STTH8S06D	Semiconductor
	_		1000 V, 1 A, Rectifier,		\ <i></i>
33	2	D3 D14	DO-41	1N4007-E3/54	Vishay
			1000 V, 1 A, Rectifier, Glass Passivated, DO-		
34	2	D4 D15	213AA (MELF)	DL4007-13-F	Diodes Inc
01	_	01010	1000 V, 1 A, Ultrafast		
35	1	D5	Recovery, 75 ns, DO-41	UF4007-E3	Vishay
			200 V, 1 A, Ultrafast		Í
			Recovery, 50 ns, DO-		
36	3	D6 D7 D10	41	UF4003-E3	Vishay
		D .0	600 V, 1 A, Ultrafast		
37	1	D8	Recovery, 75 ns, DO-41	UF4005-E3	Vishay
38	1	D9	100 V, 40 A, Dual Schottky, TO-220AB	MBR40H100	Onsemi
		03	75 V, 0.15 A, Fast		Onserni
39	4	D12 D16 D17 D18	Switching, 4 ns, MELF	LL4148-13	Diode Inc.
40	1	F1	5 A, 250V, Slow, TR5	3721500041	Wickman
			Thermal Grease,		
41	1	GREASE1	Silicone, 5 oz Tube	CT40-5	ITW Chemtronics
		HS PAD1 HS			
42	4	PAD2 HS PAD3 HS PAD4	HEATSINK PAD, TO- 220, Sil-Pad K10	K10-58	Bergquist
-72	<u>т</u>		HEATSINK, Alum, EXT,		
			3 hole, 3 mtg holes,		
			6.00" L x 1.150" W x		
43	1	HS1	1.300" H	62230U06000G,MOD	Aavid
			HEATSINK, TWISTED		
44	2	HS2 HS3	FIN, 13.4°C/Watt, TO- 220	593002B03400G	AavidThermalloy
	2	1102 1100	HEATSINK, Alum, EXT,	J3JUUZDUJ4UUG	
			2 hole, 2 mtg		
			holes,4.00" Ľ x 1.150"		
	1	HS4	W x 1.300" H	62230U04000G,MOD	Aavid

46 1 J1 AC Input Receptacle and Accessory Plug, PCBM 161-R301SN13 10 Position (1 x 10) header, 0.156 pitch, 00.40.40455	Kobiconn
46 1 J1 PCBM 161-R301SN13 10 Position (1 x 10) header, 0.156 pitch, 10 10	Kohiconn
10 Position (1 x 10) header, 0.156 pitch,	
header, 0.156 pitch,	
47 1 J3 Vertical 26-48-1105	Molex
4 Position (1 x 4)	
header, 0.156 pitch,	
48 1 J4 Vertical 26-48-1045	Molex
Common Mode Choke P/N T22148-902	
49 2 L1 L2 Toroidal PI Taiwan)	CO. LTD
	00.210
29 uH, Ground Choke,	
50 1 L3 Flying Lead	
PFC Choke, Toroidal	
51 1 L4 Core, 1032 mH	
MTG_HOLE2	
MTG_HOLE3	
MTG_HOLE4	
52 4 MTG_HOLE5 Mounting Hole No 6	
Nut, Hex, Kep 4-40, S	
53 2 NUT1 NUT2 ZN Cr3 plateing RoHS 4CKNTZR	Olander
NPN,60V 1000MA,	
54 1 Q1 SOT-23 FMMT491TA	Zetex Inc
560 V, 21 A, 190	
mOhm. N-Channel, TO-	
55 1 Q2 220 SPP21N50C3	Infineon
PNP, 60V 1000MA,	
56 1 Q3 SOT-23 FMMT591TA	Zetex Inc
NPN, DARL 80V	
57 1 Q4 500MA, SOT-89 BST52TA	Zetex Inc
PNP, Small Signal BJT,	On
58 3 Q5 Q13 Q14 40 V, 0.2 A, SÕT-23 MMBT3906LT10	G Semiconductor
NPN, Small Signal BJT,	On
59 5 Q6 Q7 Q8 Q9 Q15 40 V, 0.2 A, SOT-23 MMBT3904LT1G	
600 V, 11 A,370 mOhm.	
60 2 Q10 Q11 N-Channel, TO-220F STP11NM60FDF	FP IR/Vishay
NPN, Small Signal BJT,	On
61 1 Q17 40 V, 0.2 A, TO-92 2N3904RLRAG	Semiconductor
R1 R2 R3 R29 680 k, 5%, 1/4 W, Metal	
62 5 R30 Film, 1206 ERJ-8GEYJ684	V Panasonic
	raildsuilic
0 R, 5%, 1/4 W, Metal	
63 1 R4 Film, 1206 ERJ-8GEY0R00	V Panasonic
2.2 R, 5%, 1/4 W, Metal	
64 1 R7 Film, 1206 ERJ-8GEYJ2R2	V Panasonic
R8a R8b R8c R8d 0.1 R, 1%, 1/2 W, Metal	
65 6 R8e R8f Film	Panasonic
4.7 k, 5%, 1/4 W, Metal	
66 1 R9 Film, 1206 ERJ-8GEYJ472	V Panasonic
220 k, 5%, 1/2 W,	
67 1 R10 Carbon Film CFR-50JB-220K	ŭ
68 1 R11 4.7 M, 5%, 1/4 W, CFR-25JB-4M7	Yageo

				1	
			Carbon Film		
69	3	R12 R14 R16	22 k, 5%, 1/4 W, Metal Film, 1206	ERJ-8GEYJ223V	Panasonic
70	2	R13 R22	470 R, 5%, 1/4 W, Metal Film, 1206	ERJ-8GEYJ471V	Panasonic
71	1	R15	330 k, 5%, 1/4 W, Metal Film, 1206	ERJ-8GEYJ334V	Panasonic
		R17 R33 R36 R47	1 k, 5%, 1/4 W, Metal		
72	8	R63 R65 R72 R77	Film, 1206	ERJ-8GEYJ102V	Panasonic
			10.2 k, 1%, 1/4 W, Metal		
73	1	R18	Film, 1206	ERJ-8ENF1022V	Panasonic
74	1	R19	1.3 M, 5%, 1/4 W, Metal Film, 1206	ERJ-8GEYJ135V	Panasonic
			220 k, 5%, 1/4 W, Metal		
75	1	R20	Film, 1206	ERJ-8GEYJ224V	Panasonic
76	2	R21 R26	100 k, 5%, 1/4 W, Metal Film, 1206	ERJ-8GEYJ104V	Panasonic
70	2	N21 N20	10.0 k, 1%, 1/4 W, Metal	EKJ-8GE13104V	Fallasofiic
77	1	R23	Film, 1206	ERJ-8ENF1002V	Panasonic
	-		226 k, 1%, 1/4 W, Metal		
78	1	R24	Film, 1206	ERJ-8ENF2263V	Panasonic
			3.9 M, 5%, 1/4 W, Metal		
79	1	R25	Film, 1206	ERJ-8GEYJ395V	Panasonic
00	1	DOZ	33 R, 5%, 1/4 W, Metal		Danagania
80	1	R27	Film, 1206 620 k, 5%, 1/4 W, Metal	ERJ-8GEYJ330V	Panasonic
81	1	R28	Film, 1206	ERJ-8GEYJ624V	Panasonic
			2.2 k, 5%, 1/4 W, Metal		
82	1	R31	Film, 1206	ERJ-8GEYJ222V	Panasonic
00	~	R32 R35 R69 R70	10 k, 5%, 1/4 W, Metal		Deneratio
83	6	R73 R74	Film, 1206 3.9 k, 5%, 1/4 W, Metal	ERJ-8GEYJ103V	Panasonic
84	1	R34	Film, 1206	ERJ-8GEYJ392V	Panasonic
01			47 k, 1%, 1/8 W, Metal		
85	2	R52 R52a	Film, 0805		
			4.7 R, 5%, 1/4 W, Metal		
86	2	R37 R38	Film, 1206	ERJ-8GEYJ4R7V	Panasonic
87	F	R39 R40 R41 R43	768 k, 1%, 1/4 W, Metal		Panasonic
87	5	R46	Film, 1206 10 R, 5%, 1/4 W, Metal	ERJ-8ENF7683V	Panasonic
88	4	R42 R44 R56 R58	Film, 1206	ERJ-8GEYJ100V	Panasonic
			150 R, 5%, 1/4 W, Metal		
89	1	R45	Film, 1206	ERJ-8GEYJ151V	Panasonic
			2.2 k, 5%, 1/8 W,		
90	1	R48	Carbon Film	CFR-12JB-2K2	Yageo
91	1	R60	51.1 k, 1%, 1/4 W, Metal Film, 1206		Panasonic
92	1	R49	46.4 k, 1%, 1/4 W, Metal Film, 1206		Panasonic
			34.8 k, 1%, 1/4 W, Metal		
93	1	R50	Film, 1206		Panasonic
			18 k, 1%, 1/8 W, Metal		
94	1	R51	Film, 0805		Panasonic

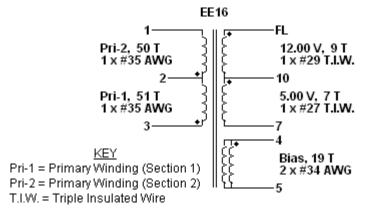

		ſ			
95	1	R53	19.1 k, 1%, 1/4 W, Metal Film, 1206	ERJ-8ENF1912V	Panasonic
96	1	R54	1.8 k, 5%, 1/4 W, Metal Film, 1206	ERJ-8GEYJ182V	Panasonic
	-		1 R, 5%, 1/4 W, Metal		
97	1	R55	Film, 1206	ERJ-8GEYJ1R0V	Panasonic
		DEZ	10 R, 5%, 1/4 W,		Manag
98	1	R57	Carbon Film CURRENT SENSE 0.07	CFR-25JB-10R	Yageo
99	1	R59	OHM 2W		Ohmite
33		103	6.8 k, 5%, 1/4 W, Metal		Omme
100	1	R62	Film, 1206		
		-	150 k, 1%, 1/4 W, Metal		
101	1	R66	Film, 1206		
			470 k, 5%, 1/4 W, Metal		
102	1	R67	Film, 1206	ERJ-8GEYJ474V	Panasonic
			10 k, 1%, 1/8 W, Metal		
103	1	R68	Film, 0805	ERJ-6ENF1002V	Panasonic
104	4	D74	100 R, 1%, 1/4 W, Metal		Denegaria
104	1	R71	Film, 1206	ERJ-8ENF1000V	Panasonic
105	1	R75	249 R, 1%, 1/4 W, Metal Film	MFR-25FBF-249R	Yageo
105	I	N75	2.26 k, 1%, 1/4 W, Metal	WIFR-23FBF-249R	rayeu
106	1	R76	Film	MFR-25FBF-2K26	Yageo
100			1 k, 5%, 1/8 W, Carbon		lugoo
107	1	R77	Film	CFR-12JB-1K2	Yageo
			3.3 k, 5%, 1/4 W,		Ŭ
108	2	R78	Carbon Film	CFR-25JB-3K3	Yageo
			3.9 k, 5%, 1/4 W,		
109	1	R79	Carbon Film	CFR-25JB-3K9	Yageo
		Baa	1.6 k, 5%, 1/4 W,		
110	1	R80	Carbon Film	CFR-25JB-1K6	Yageo
111	1	R81	30 R, 5%, 1/4 W, Carbon Film		Vagaa
	I	ROI	51 R, 5%, 1/4 W,	CFR-25JB-30R	Yageo
112	1	R82	Carbon Film	CFR-25JB-51R	Yageo
112		1102	CURRENT SENSE .025		lugoo
112	1	R85	OHM 3W		Ohmite
			5.6 k, 1%, 1/4 W, Metal		
113	1	R86	Film, 1206	ERJ-8ENF562V	Panasonic
			2.2 M, 5%, 1/4 W,		
114	1	R119	Carbon Film	CFR-25JB-2M2	Yageo
			SPST-NO, 5A 12VDC,		
115	1	RL1	PC MNT	G6B-1114P-US-DC12	OMRON
116	1	RT1	NTC Thermistor, 5	CL150	Thermometrics
	I		Ohms, 4.7 A		
117	1	RV1	320V, 84J, 15.5 mm, RADIAL	S14K320	Epcos
	1	SCREW1			
		SCREW2			
		SCREW3			
		SCREW4	SCREW MACHINE		Building
118	5	SCREW18	PHIL 6-32X5/16 SS	PMSSS 632 0031 PH	Fasteners
I			•		•

		SCREW5			
		SCREW6			
		SCREW7			
		SCREW8			
		SCREW9			
		SCREW10			
		SCREW10			
		SCREW12			
		SCREW13			
		SCREW14			
		SCREW15	SCREW MACHINE		Building
119	12	SCREW16	PHIL 4-40X5/16 SS	PMSSS 440 0031 PH	Fasteners
		STDOFF1			
		STDOFF2			
		STDOFF3			
		STDOFF4	Standoff Hex,6-32,		
120	5	STDOFF5	.375L,Alum	2209	Keystone Elect
120		0.00.10	SLIDE MINI SPDT PC		
121	4	SW1	MNT AU	1101M2S3CBE2	ITT Ind/C&Kdiv
121	1	5001	=	TTUTW253CBE2	TTT Ind/Caraiv
122	1	T1	EE16 Custom Transformer		
122	1		Dasung custom		Dasung
123	1	T2	Transformer, ER3944		
123	1	TP1 TP2 TP3 TP4	Transionner, ER3944		Magnetics
		TP1 TP2 TP3 TP4 TP5 TP6 TP7 TP9			
		TP10 TP11 TP12			
		TP13 TP14 TP15			
		TP16 TP17 TP18			
		TP20 TP24 TP26	Test Point, BLK,THRU-		
124	21	TP29	HOLE MOUNT	5011	Keystone
			Test Point, YEL, THRU-		
125	1	TP8	HOLE MOUNT	5014	Keystone
			Test Point, RED, THRU-		
126	1	TP27	HOLE MOUNT	5010	Keystone
			Test Point, ORG, THRU-		
127	1	TP28	HOLE MOUNT	5013	Keystone
			DUAL Op Amp, Single		Texas
128	1	U10	Supply, DIP-8	LM358P	Instruments
	-	-	Opto coupler, 35 V,		
129	3	U1 U2 U7	CTR 80-160%, 4-DIP	LTV-817A	Liteon
120		010201	TinySwitch-III,		Power
130	1	U4	TNY274PN, DIP-8C	TNY274PN	Integrations
130	1				integrations
101	4	112	Opto coupler, 80 V,		Shorp
131	1	U3	CTR 300-600%, 4-DIP	PC817X4J000F	Sharp
100	0		IC, REG ZENER		National
132	2	U5 U8	SHUNT ADJ SOT-23	LM431AIM3/NOPB	Semiconductor
		110	Controller, PFC/LLC,		
133	1	U6	24-pin DIP	PLC810PG	Powerintegrations
			2.495 V Shunt		
			Regulator IC, 2%, 0 to		On
134	1	U9	70C, TO-92	TL431CLPG	Semiconductor
			150 V, 5 W, 5%, TVS,		
135	1	VR1	DO204AC (DO-15)	P6KE150A	LittlelFuse
					•

		1		
-		15 V, 5%, 500 mW, DO-		
2	VR2	213AA (MELF)	ZMM5245B-7	Diodes Inc
		5.6 V, 5%, 500 mW,		
1	VR3	DO-213AA (MELF)	ZMM5232B-7	Diodes Inc
		10 V, 5%, 500 mW, DO-		
1	VR4	213AA (MELF)	ZMM5240B-7	Diodes Inc
		5.1 V, 5%, 500 mW,		
1	VR5	DO-213AA (MELF)	ZMM5256B-7	Diodes Inc
		30 V, 5%, 500 mW, DO-		
1	VR6	213AA (MELF)	ZMM5248B-7	Diodes Inc
1	VR7	213AA (MELF)	ZMM5231B-7	Diodes Inc
	WASHER1			
_				Building
5		Washer Flat #6, SS	FWSS 006	Fasteners
				Building
12		WASHER FLAT #4 SS	EWSS 004	Fasteners
12				
		Washer Nvlon Shoulder		
4	WASHER20	#4	3049	Keystone
	1 1 1 5	1VR31VR41VR51VR61VR7WASHER1 WASHER2 WASHER3 WASHER45WASHER3 WASHER45WASHER46WASHER7 WASHER6 WASHER7 WASHER10 WASHER10 WASHER11 	2 VR2 213AA (MELF) 1 VR3 DO-213AA (MELF) 10 V, 5%, 500 mW, DO- 1 VR4 213AA (MELF) 1 VR4 213AA (MELF) 1 VR4 213AA (MELF) 1 VR4 213AA (MELF) 1 VR5 DO-213AA (MELF) 1 VR5 DO-213AA (MELF) 1 VR6 213AA (MELF) 1 VR6 213AA (MELF) 1 VR7 213AA (MELF) WASHER1 WASHER1 WASHER1 WASHER2 WASHER3 WASHER3 WASHER4 WASHER5 WASHER10 WASHER10 WASHER11 WASHER12 WASHER15 WASHER15 12 WASHER16 WASHER18	2 VR2 213ÅA (MELF) ZMM5245B-7 1 VR3 DO-213AA (MELF) ZMM5232B-7 1 VR4 213AA (MELF) ZMM5240B-7 1 VR4 213AA (MELF) ZMM5240B-7 1 VR4 213AA (MELF) ZMM5240B-7 1 VR5 DO-213AA (MELF) ZMM5240B-7 1 VR5 DO-213AA (MELF) ZMM5240B-7 1 VR6 213AA (MELF) ZMM5248B-7 1 VR6 213AA (MELF) ZMM5248B-7 1 VR6 213AA (MELF) ZMM5231B-7 1 VR7 213AA (MELF) ZMM5231B-7 1 VR7 213AA (MELF) ZMM5231B-7 WASHER1 WASHER2 WASHER3 WASHER4 5 WASHER18 Washer Flat #6, SS FWSS 006 WASHER5 WASHER18 WASHER10 WASHER10 WASHER10 WASHER13 WASHER14 WASHER15 12 WASHER16 WASHER18 FWSS 004 WAS

7 Main LLC Transformer (T2) Specification

7.1 Electrical Diagram

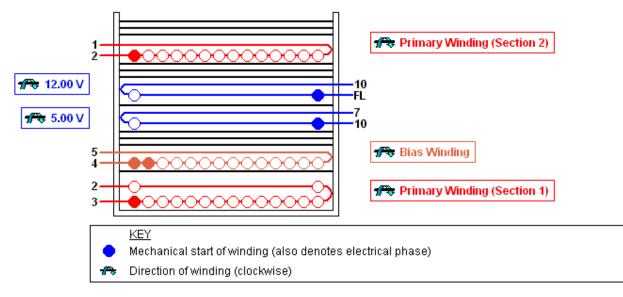


7.2 Electrical Specifications

Electrical Strength	1 second, 60Hz, from Pins 1-9 to Pins 10-18	3000VAC
Primary Inductance	Pin 6-8, all other windings open, measured at 94.4 KHz, 0.4 VRMS	260 uH, +/- 10%
Primary Leakage Inductance	Pins 13-14, with Pins 15- 16 shorted, , measured at 94.4 KHz, 0.4 VRMS	60 μH (typ)

8 Flyback Transformer (T1)

8.1 Electrical Diagram


8.2 Electrical Specifications

Electrical Strength	3000VAC	
Primary Inductance	Pin 1-3, all other winding open, measured at typical switching frequency, 0.4 VRMS	2154 uH, +/- 10%
Primary Leakage Inductance	Measured between Pin 1 to Pin 3, with all other Windings shorted.	54 µH (max)

8.3 Materials

Item	Description
[1]	Core: EE16, NC-2H (Nicera) or Equivalent, gapped for ALG of 212 nH/t ²
[2]	Bobbin: Generic, 5 pri. + 5 sec.
[3]	Barrier Tape: Polyester film (1 mil base thickness), 8.60 mm wide
[4]	Varnish
[5]	Magnet Wire: 35 AWG, Solderable Double Coated
[6]	Magnet Wire: 34 AWG, Solderable Double Coated
[7]	Triple Insulated Wire: 27 AWG
[8]	Triple Insulated Wire: 29 AWG

8.4 Build Diagram

Figure 11 – Standby Transformer Build Diagram

8.5 Construction

Winding	Orient bobbin (item [2]) on winding machine such that the primary pin side of bobbin (pins 1-5) is on the
preparation	left side.
WD1 (1 st half Primary)	Start on pin(s) 3 and wind 51 turns (x 1 filar) of item [5] in 2 layer(s) from left to right. At the end of 1st layer, continue to wind the next layer from right to left. On the final layer, spread the winding evenly across entire bobbin. Finish this winding on pin(s) 2.
Insulation	Apply one layer of tape (item [7]).
WD2	Start on pin(s) 4 and wind 19 turns (x 2 filar) of item [6]. Wind in same rotational direction as primary
(Bias)	winding. Spread the winding evenly across entire bobbin. Finish this winding on pin(s) 5.
Insulation	Apply three layers of tape (item [6]).
WD3	Start on pin(s) 10 and wind 7 turns (x 1 filar) of item [7]. Spread the winding evenly across entire bobbin.
(Secondary)	Wind in same rotational direction as primary winding. Finish this winding on pin(s) 7.
Insulation	Apply one layers of tape (item [6]).
WD4	Start on pin(s) FL and wind 9 turns (x 1 filar) of item [8]. Spread the winding evenly across entire
(Secondary)	bobbin. Wind in same rotational direction as primary winding. Finish this winding on pin(s) 10.
Insulation	Apply three layer of tape (item [6]).
WD1 (2 nd half Primary)	Start on pin(s) 2 and wind 50 turns (x 1 filar) of item [5] in 1 layer(s) from left to right. At the end of 1st layer, continue to wind the next layer from right to left. On the final layer, spread the winding evenly across entire bobbin. Finish this winding on pin(s) 1.
Insulation	Apply 3 layers of tape (item [6]) as finish wrap.
Finish	Gap core halves (item [1]) for inductance of 2154 uH +/-10%. Assemble and secure core halves. Dip varnish using (item [4]).

9 PFC Choke Specification (L4)

9.1 Electrical Diagram

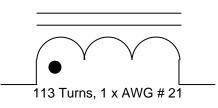


Figure 12 – PFC Choke schematic

9.2 Electrical Specification

Inductance: 1.032 µH +/- 15%

9.3 Materials

Item	Description
[1]	Toroidal Core: Kool Mu, Magnetics 0077083A7
[2]	Magnet Wire: #21AWG, solderable double coated.
[3]	Tape Polyester Film, 3M 1350F-1, or equivalent.
[6]	Tie wrap Nylon 99mm Panduit PLT-IM or equivalent

9.4 Build Diagram

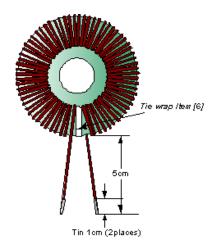


Figure 13 – PFC Choke Build Diagram

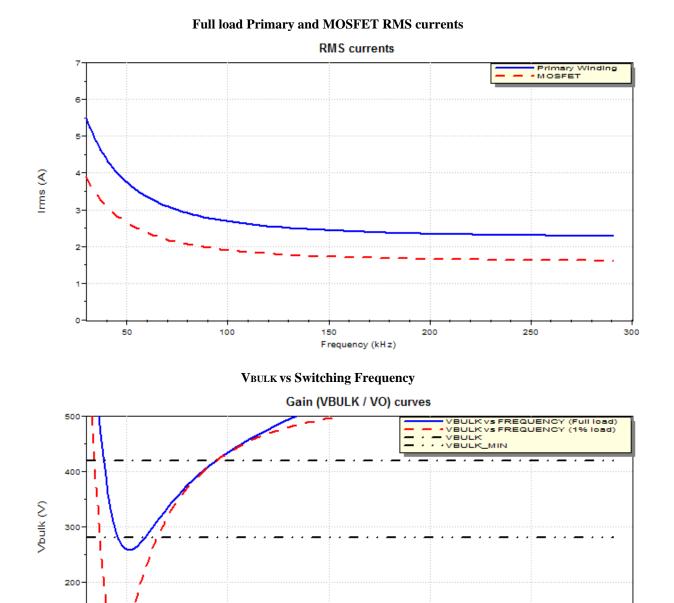
9.5 Winding Instructions

- 1. Wind 113 turns of AWG # 21 wire in clockwise direction for first layer.
- 2. Completely fill the first layer before going into the second layer.
- 3. Make sure that the windings are evenly distributed for each layer.
- 4. Fix winding with tape.

10 LLC Spreadsheet

ACDC_PLC810_030509; Rev.1.3; Copyright Power Integrations 2008	INPUTS	INFO	OUTPUTS	UNITS	ACDC_PLC810_030509_Rev1-3.xls; PLC810 Half- Bridge, Continuous mode LLC Resonant Converter Design Spreadsheet	
Enter Input Parameters					Design Title	
Vacmin	140.00		140	V	Minimum AC input voltage	
Vacmax	290.00		290	v	Maximum AC input voltage	
lacinmax	200.00		3.60	Â	Maximum input AC rms current at Vacmin	
Vbulk	420.00		420.00	V	Nominal PFC output voltage	
Vbulkmax	420.00		449.40	V	Peak PFC OVP voltage (typical is 7% above Vbulk)	
Vbulkmin	280.00		280.00	V	Minimum bulk capacitor voltage at the specified holdup	
					time. Typical value is between 250 - 320 VDC. Max holdup time is at 250 V	
fL	47.00		47.00	Hz	AC Line input frequency	
Holdup time	10.00		10.00	ms	Bulk capacitor hold up time	
CIN_MIN			93.55	uF	Minimum value of bulk cap to meet holdup time requirement; Adjust holdup time and Vbulkmin to change bulk cap value	
bulk ripple			24.10	V	Bulk capacitor peak to peak voltage (low freq ripple)	
Vrippeak			432.05	V	Bulk cap peak value of ripple voltage	
IAC			3.60	А	AC input rms current at VACMIN	
IAC_PEAK			5.09	A	Peak AC input current at full load and VACMIN	
Enter LLC (secondary) outputs					The spreadsheet assumes AC stacking of the secondaries	
Vo1	41.40			V	Main Output Voltage. Spreadsheet assumes that this is the regulated output	
lo1	10.00			А	Main output maximum current	
Vd1			0.70	V	Forward voltage of diode in main output	
Po1			414.00	W	Output Power from first LLC output	
Vo2				V	Second Output Voltage	
lo2				A	Second output current	
Vd2			0.70	V	Forward voltage of diode used in second output	
Po2			0.00	Ŵ	Output Power from second LLC output	
102			0.00			
Enter stand-by (auxiliary) outputs	40.00					
Vo3	13.00			V	Auxiliary Output 1 Voltage	
lo3	0.20			Α	Auxiliary Output 1 maximum current	
Vo4				V	Auxiliary Output 2 Voltage	
104				A	Auxiliary Output 2 maximum current	
Efficiciency and Loss Allocation						
P_LLC			414.00	W	Specified LLC output power	
P_AUX			2.60	W	Auxiliary output power	
P_PFC			458.41	W	PFC output power	
P_TOTAL			416.60	W	Total output power (Includes Output power from LLC stage and auxiliary stage)	
LLC_n_estimated	0.91		0.91		Efficiency of LLC stage	
AUX_n_estimated			0.75		Efficiency of auxiliary output	
PFC_n_estimated	0.91		0.91		Minimum efficiency of PFC front end stage	
PIN	0.01		503.75	W	AC input power	
Overall efficiency			0.83		Minimum system efficiency	
Ploss_PFC			45.34	W	PFC stage power loss	
Ploss_LLC			40.95	W	LLC stage power loss	
Ploss_AUX			0.87	W	Auxiliary power loss	
Ploss_TOTAL			87.15	W	Total power loss	
1000_TOTAL			57.15	**		

Enter PFC Design Parameters					
f_nominal_desired	94.40	94.40	kHz	Desired full load switching frequency. Recommended value 66 kHz to 132 kHz	
Krp	0.43	0.43		PFC choke ripple current factor. Actual Krp tends to increase at higher current when using iron powder/Sendust cores, due to drop in inductance at higher current	
Diode bridge Vf		0.70	V	Forward voltage drop of diode bridge	
Rdson		0.18	ohms	PFC MOSFET Rdson - use high temp value from datasheet	
Coss		22.00	pF	PFC MOSFET high voltage Coss from datasheet	
tON		20.00	ns	MOSFET turnon current rise time. Check actual value	
Qrr		76.40	nC	Average Qrr of boost diode over AC sinusoid	
PFC CHOKE					
Parameters		500 74		DEC shales industor as	
Lpfc		506.74	uH	PFC choke inductance	
ILpk AL	380.00	7.28	A nH/t^2	PFC choke peak current at VACMIN nH per turn^2 (from magnetics datasheet). Note - This value decreases by as much as 15% if a belly-band is added to reduce EMI	
n		36.52	turns	PFC choke number of turns	
MLT	5.00	00.02	cm	Mean length per turn	
AWG Choke	22		0111	PFC choke wire gauge	
Equivalent Choke Metric Wire gauge		0.70	mm	Equivalent diameter of wire in metric units	
Wire length		1.83	m	Length of wire used on PFC choke	
Strands	3			Number of wires	
DCR		34.94	m- ohms	DC resistance of wire at 25 C	
DCR at 85 C		44.03	m- ohms	DC resistance of wire at 85 C	
Irms_CHOKE		3.83	A	PFC choke rms current	
DCR Cu loss		0.65	W	PFC choke DC Copper loss for reference at 85 C	
ACR_PFC_Choke		88.05	m- ohms	Measure or calculate; add 26% to measured value to ge 85 C value	
HF Irms		0.77	A	RMS current of switching component	
HF Cu loss		0.05	W	Copper loss due to switching component at 85 C	
tot Cu loss		0.70	W	Total copper loss at 85 C	
LM	10.00		cm	Magnetic path length of core used	
Hpk		33.39	Oe	Peak MMF in Oersteds, calculated at low line	
Hpk_SI		2658	A/m	Peak MMF in A/m, calculated at low line	
PFC FET, Diode and Output Parameters					
Isense_R		0.06	ohms	Maximum value of PFC current sense resistor	
Sense resistor power dissipation		0.87	W	PFC sense resistor power dissipation at Vacmin	
Irms_FET		3.07	A	PFC MOSFET RMS current measured at VACMIN	
Conduction loss		1.71	W	PFC MOSFET conduction loss	
Trrloss	1	3.03	W	PFC MOSFET loss due to diode Trr	
Cossloss	İ	0.17	W	MOSFET Coss loss	
Crossover loss		1.47	W	MOSFET crossover turnon loss	
Total PFC loss		6.22	W	MOSPFC FET total loss	
Diode bridge Ploss		4.56	W	Diode bridge estimated loss	
PFC Diode RMS current		1.63	A	Approximate PFC Diode RMS current at nominal AC input voltage (VACMIN) (includes 100/120 Hz component)	
Bulk capacitor RMS current		1.79	A	Approximate Bulk Capacitor RMS current at nominal AC input voltage (VACMIN) (includes 100/120 Hz component and LLC input current)	



LLC TRANSFORMER				
CALCULATIONS				
Po		421.00	W	Output from LLC converter including diode loss
Vo	4.05	42.10	V	Output at transformer windings (includes diode drop)
Ae	1.25 200.00	200.00	cm^2 uH	Transformer core cross-sectional area Parallel inductance. (Lpar = Lopen - Lser for integrated
Lpar	200.00	200.00	un	transformer; Lpar = Lmag for non-integrated transformer;
Lser	60.00	60.00	uH	Leakage inductance of integrated transformer; Leakage + external inductor for non-integrated transformer
Lopen		260.00	uH	Primary open circuit inductance for integrated transformer
С	47.00	47.00	nF	Series resonant capacitor
fnominal_desired		94.40	kHz	Desired full load switching frequency. Recommended value 66 kHz to 132 kHz
fnominal_actual		94.4	kHz	Expected frequency at nominal input voltage (VBULK) and full load
IRMS_LLC_Primary		2.75	A	Primary winding RMS current at full load and nominal input voltage (VBULK)
IRMS_LLC_Q1	├ ─── ├ ──	1.94	A	RMS current through upper MOSFET in LLC half bridge
VMIN		258.1	V	Minimum Voltage on Bulk Capacitor at minimum switching frequency
f_AT_VMIN	ļ	51.00	kHz	Frequency at minimum Bulk capacitor voltage
fpar		52	kHz	Parallel resonant frequency (defined by Lpar + Lser and C)
fser		95	kHz	Series resonant frequency (defined by series inductance Lser and C)
fmin		54	kHz	Min frequency, at VBULK _MIN and full load. Set PLC810 minimum frequency to this value. Operation below this frequency results in loss of ZVS
NP_1		30		Primary winding number of turns
NS_1	6.00	6		Secondary winding number of turns
n_RATIO	5.00	5.00		Transformer turns ratio. Adjust this value so that fnominal_actual is close to fnominal_desired
Bpkfmin		2599	Gauss	First Quadrant peak flux excursion at minimum frequency.
BAC		2973	Gauss	AC peak to peak flux density (calculated at fnominal_actual, VBULK at full load)
LLC sense resistor		0.07	ohms	LLC current sense resistor
Pdiss_LLC_senseR		0.51	W	Power dissipation in LLC sense resistor
PRIMARY				
Primary gauge	40.00		AWG	Individual wire strand gauge used for primary winding
Equivalent Primary Metric Wire gauge		0.08	mm	Equivalent diameter of wire in metric units
Primary litz strands	125.00			Number of strands used in Litz wire; for non-litz non- integrated transformer set to 1
Primary parallel wires	1.00			Number of parallel individual wires to make up Litz wire
Resistivity_25 C_Primary		29.83	m- ohm/m	Resistivity in milli-ohms per meter
Transformer primary MLT	7.00		cm	Mean length per turn
Primary turns		30.00		Number of primary turns
Primary DCR 25 C		62.65	m- ohm	Estimated resistance at 25 C
Primary DCR 100 C		83.95	m- ohm	Estimated resistance at 100 C (approximately 33% higher than at 25 C)
Primary RMS current	1.50		А	Measured RMS current through the primary winding
ACR_Trf_Primary		134.32	m- ohm	Measured AC resistance (at 100 kHz, room temperature), multiply by 1.33 to approximate 100 C winding temperature
Primary copper loss		0.30	W	Total primary winding copper loss at 85 C
Winding 1 (Vo1)				Note - Power loss calculations are for each winding half

				of secondary	
Sec 1 Wire gauge	40		AWG	Individual wire strand gauge used for secondary winding	
Equivalent secondary 1		0.08	mm	Equivalent diameter of wire in metric units	
Metric Wire gauge					
Sec 1 litz strands	175			Number of strands used in Litz wire; for non-litz non-	
				integrated transformer set to 1	
Parallel wires sec 1	2			Number of parallel individual wires to make up Litz wire	
Resistivity_25 C_sec1		10.65	m-	Resistivity in milli-ohms per meter	
			ohm/m		
Transformer Secondary MLT	7.00		cm	Mean length per turn	
Sec 1 Turns		6.00		Secondary winding turns (each half)	
DCR_25C_Sec1		4.47	m-	Estimated resistance at 25 C (for reference)	
			ohm		
DCR_100C_Sec1		6.00	m-	Estimated resistance at 100 C (approximately 33%	
			ohm	higher than at 25 C)	
Sec 1 RMS current		15.72	A	RMS current through Output 1 winding, assuming half sinusoidal waveshape	
DCR_Ploss_Sec1		1.20	W	Estimated Power loss due to DC resistance (both secondary halves)	
ACR_Sec1		9.59	m- ohm	Measured AC resistance (at 100 kHz, room temperature), multiply by 1.33 to approximate 100 C winding temperature. Default value of ACR is twice the DCR value at 100 C	
ACR_Ploss_Sec1		4.74	W	Estimated AC copper loss (both secondary halves)	
Total secondary winding Copper Losses		5.94	W	Total (AC + DC) winding copper loss for both seconda halves	
Total Copper loss calculation				Does not include fringing flux loss from gap	
Primary copper loss (from Primary section)		0.30	W	Total primary winding copper loss at 85 C	
Secondary copper Loss		5.94	W	Total copper loss in secondary winding	
Transformer copper loss		6.24	W	Total copper loss in transformer (primary + secondary)	
TURNS CALCULATOR				This is to help you choose the secondary turns - not connected to any other part of spreadsheet	
V1		41.40	V	Target Output Voltage Vo1	
V1d1		0.70	V	Diode drop voltage for Vo1	
N1	4.00	0.70	v	Total number of turns for Vo1	
V2	4.00	20.35	V	Expected outputV	
V2 V2d2		0.70	V	Diode drop voltage for Vo2	
N2	2.00	0.70	v	Total number of turns for Vo2	
INZ.	2.00				

150

Frequency (kHz)

200

250

100

1

50

100

300

11 Performance Data

All measurements were taken at room temperature unless otherwise specified, with 50 Hz input frequency. Voltage measurements were taken at the connectors.

Important Notice: due to component availability LLC measurements have been performed using MBR30H150 diodes which have significantly larger voltage drop compared to what has been selected in the BOM/schematic, therefore the reported measurements represent a worst case. Document will be updated as soon as MBR30H60 will be available.

11.1.1 Composite Efficiency

Composite efficiency is shown in Figure 20 for 20% load, 50% load, and 100% load.

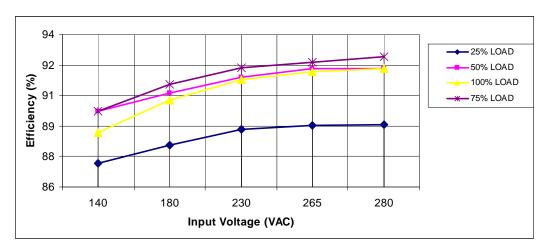
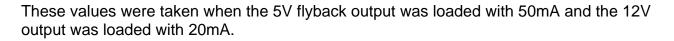



Figure 14 – PFC/LLC Composite Efficiency vs. Output Power,

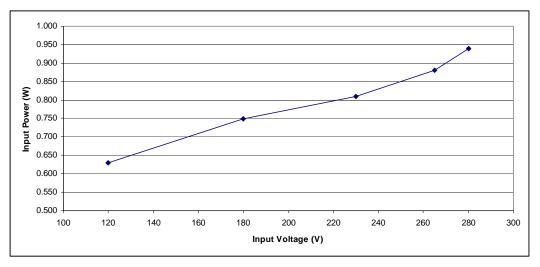


Figure 15 - Standby Power with Remote Off

11.2.1 No-Load Input Power

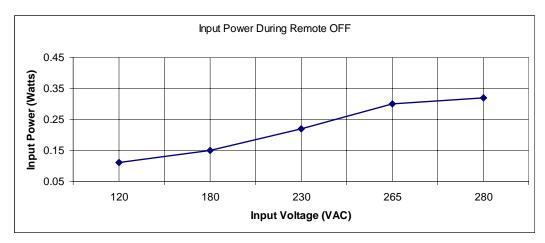
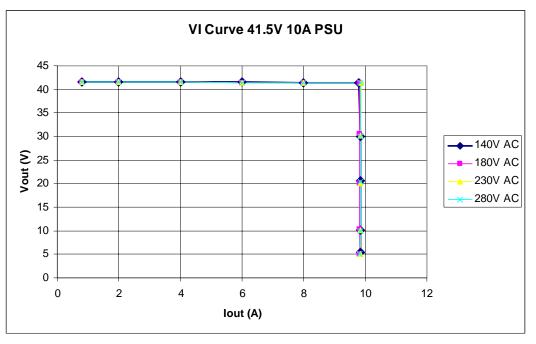



Figure 16 – Zero Load Input Power vs. Input Line Voltage, Room Temperature, 50 Hz.

Page 34 of 47

11.3 CV/CC Regulation

Figure 17 – Output Regulation (CC/CV)

The graph shows the output voltage variation with load. The PFC regulates the LLC input voltage under normal conditions so the outputs will not be affected by the AC input voltage.

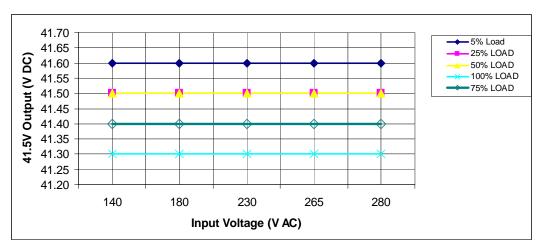


Figure 18 – Output Regulation (CV Only)

11.4 Power Factor and Total Harmonic Distortion

These values were measured directly on the AC network, where Voltage harmonics are present and contribute to additional THD on the current. Results will be updated with an AC Power Supply.

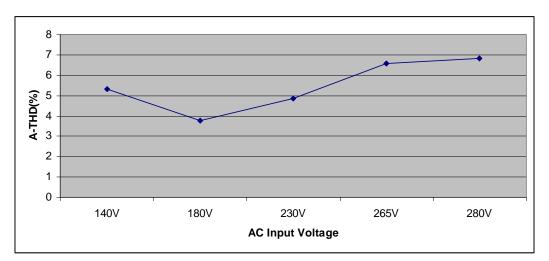
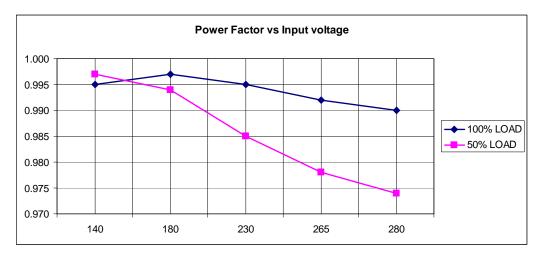
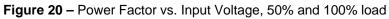
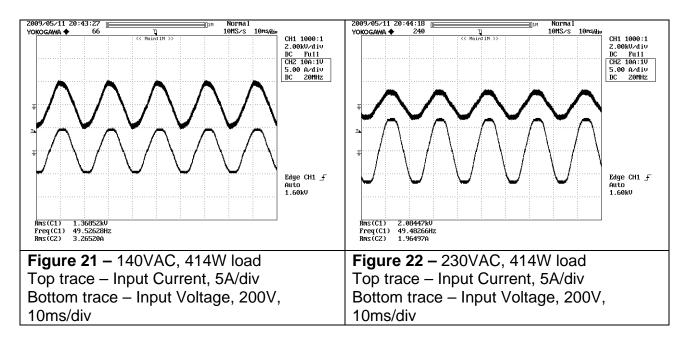
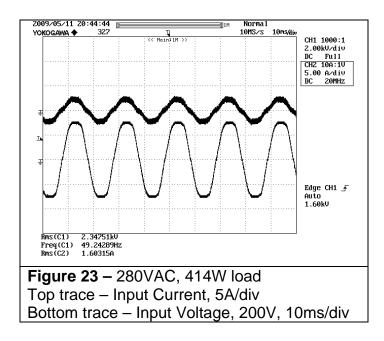
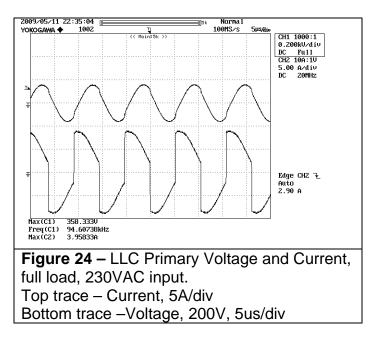




Figure 19 - Current THD vs Input Voltage, 100% load

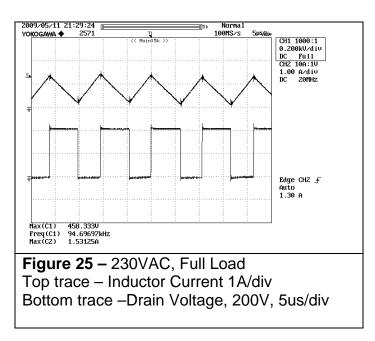

12 Thermal Performance

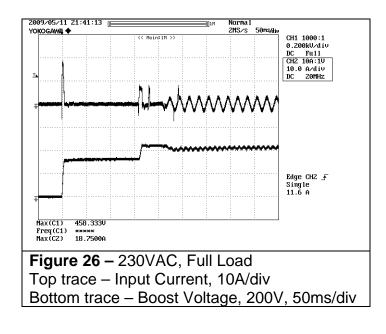

12.1 Operating Temperature Survey


	PFC HS	PFC IND	LLC TX Core	LLC TX Winding	LLC FET	LLC SEC HS	AMB
230 VAC	40	49	81	86	73	73	25

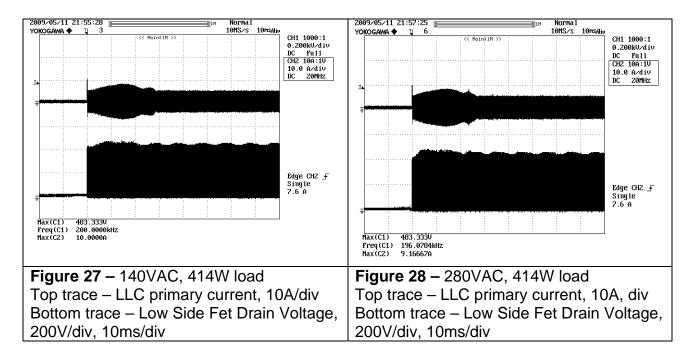
13 Waveforms

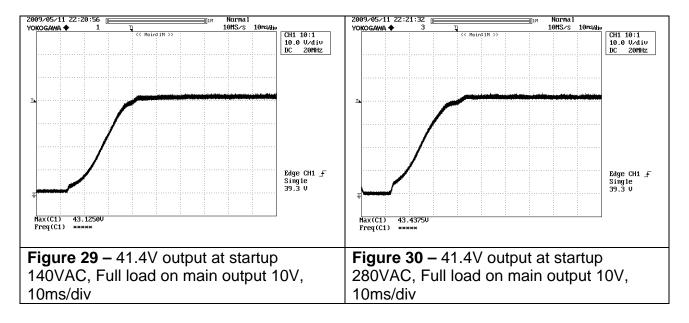
13.1 Input Voltage and Current

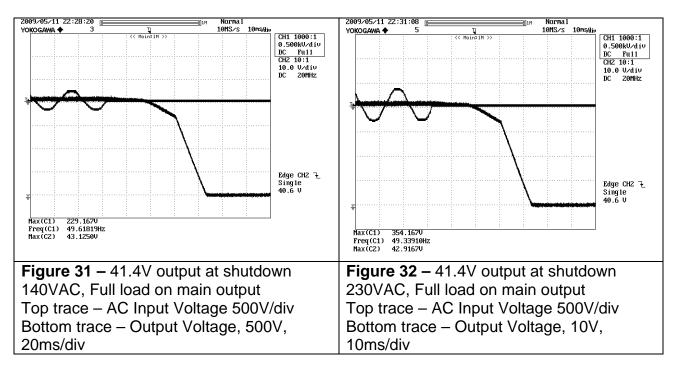




13.2 LLC Resonating Capacitor Voltage and Current, Normal Operation


13.3 PFC Stage Voltage and Current – Normal Operation


13.4 AC Input Current and PFC Output Voltage - Startup


13.5 LLC Startup

13.6 Output Voltage during Startup and Shutdown

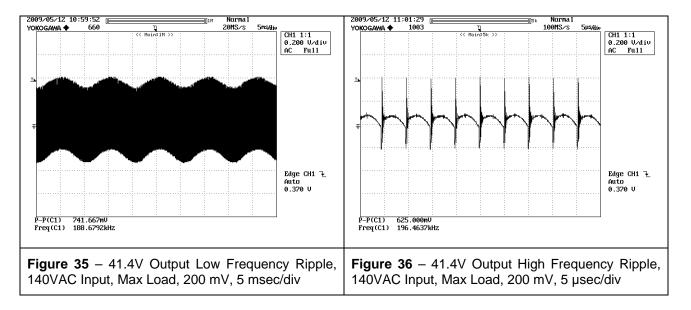
13.6.1 LLC Output

13.7 Output Ripple Measurements

13.7.1 Ripple Measurement Technique

For DC output ripple measurements, use a modified oscilloscope test probe to reduce spurious signals. Details of the probe modification are provided in the figures below.

Tie two capacitors in parallel across the probe tip of the 4987BA probe adapter. Use a 0.1 μ F / 50 V ceramic capacitor and 1.0 μ F / 50 V aluminum electrolytic capacitor. The aluminum-electrolytic capacitor is polarized, so always maintain proper polarity across DC outputs.

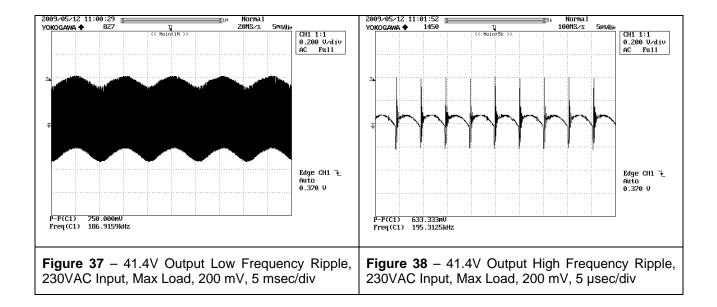
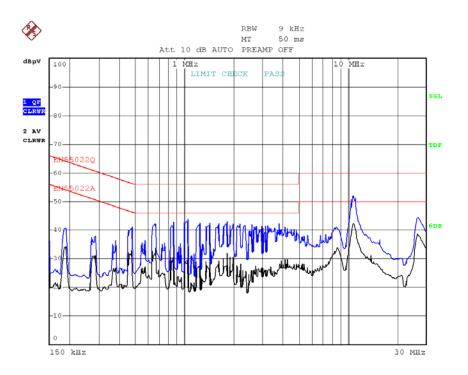
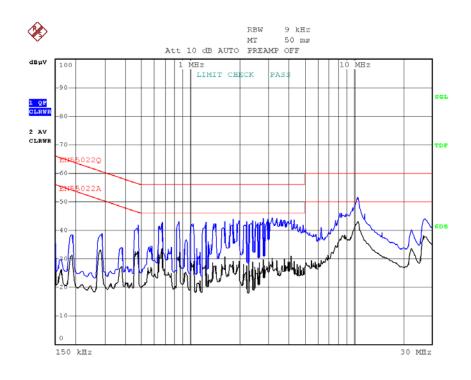
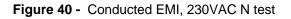

Figure 33 – Oscilloscope Probe Prepared for Ripple Measurement (End Cap and Ground Lead Removed).

Figure 34 – Oscilloscope Probe with Probe Master 4987BA BNC Adapter (Modified with Wires for Probe Ground for Ripple measurement and Two Parallel Decoupling Capacitors Added).


13.7.2 24V Ripple Measurement Results


14 Conducted EMI

Conducted EMI tests were performed with a 41.4 Ohm load connected to the LLC output. The board was bolted to a metallic ground plane, which in turn was hard wired to LISN ground.




```
Date: 11.MAY.2009 11:30:28
```

Figure 39 - Conducted EMI, 230VAC L test.

Date: 11.MAY.2009 11:41:11

15 Revision History

Date	Author	Revision	Description and changes	Reviewed
11-May-09	MU	0.1	First draft	MU

For the latest updates, visit our website: www.powerint.com

Power Integrations reserves the right to make changes to its products at any time to improve reliability or manufacturability. Power Integrations does not assume any liability arising from the use of any device or circuit described herein. POWER INTEGRATIONS MAKES NO WARRANTY HEREIN AND SPECIFICALLY DISCLAIMS ALL WARRANTIES INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT OF THIRD PARTY RIGHTS.

PATENT INFORMATION

The products and applications illustrated herein (including transformer construction and circuits external to the products) may be covered by one or more U.S. and foreign patents, or potentially by pending U.S. and foreign patent applications assigned to Power Integrations. A complete list of Power Integrations' patents may be found at www.powerint.com. Power Integrations grants its customers a license under certain patent rights as set forth at http://www.powerint.com/ip.htm.

The PI Logo, TOPSwitch, TinySwitch, LinkSwitch, DPA-Switch, PeakSwitch, EcoSmart, Clampless, E-Shield, Filterfuse, StackFET, PI Expert and PI FACTS are trademarks of Power Integrations, Inc. Other trademarks are property of their respective companies. ©Copyright 2008 Power Integrations, Inc.

Power Integrations Worldwide Sales Support Locations

WORLD HEADQUARTERS

5245 Hellyer Avenue San Jose, CA 95138, USA. Main: +1-408-414-9200 Customer Service: Phone: +1-408-414-9665 Fax: +1-408-414-9765 *e-mail: usasales@powerint.com*

CHINA (SHANGHAI)

Rm 807-808A, Pacheer Commercial Centre, 555 Nanjing Rd. West Shanghai, P.R.C. 200041 Phone: +86-21-6215-5548 Fax: +86-21-6215-2468 *e-mail: chinasales@powerint.com*

CHINA (SHENZHEN)

Room A, B & C 4th Floor, Block C Elec. Sci. Tech. Bldg. 2070 Shennan Zhong Rd. Shenzhen, Guangdong, China, 518031 Phone: +86-755-8379-3243 Fax: +86-755-8379-5828 *e-mail: chinasales @powerint.com*

GERMANY

Rueckertstrasse 3 D-80336, Munich Germany Phone: +49-89-5527-3911 Fax: +49-89-5527-3920 *e-mail: eurosales@powerint.com*

INDIA #1, 14th Main Road Vasanthanagar Bangalore-560052 India Phone: +91-80-41138020 Fax: +91-80-41138023 *e-mail: indiasales @powerint.com*

ITALY

Via De Amicis 2 20091 Bresso MI – Italy Phone: +39-028-928-6000 Fax: +39-028-928-6009 *e-mail: eurosales@powerint.com*

JAPAN

Kosei Dai-3 Bldg., 2-12-11, Shin-Yokohama, Kohoku-ku, Yokohama-shi, Kanagawa 222-0033 Phone: +81-45-471-1021 Fax: +81-45-471-3717 *e-mail: japansales*@powerint.com

KOREA

RM 602, 6FL Korea City Air Terminal B/D, 159-6 Samsung-Dong, Kangnam-Gu, Seoul, 135-728, Korea Phone: +82-2-2016-6610 Fax: +82-2-2016-6630 *e-mail: koreasales@powerint.com*

SINGAPORE

51 Newton Road, #15-08/10 Goldhill Plaza, Singapore, 308900 Phone: +65-6358-2160 Fax: +65-6358-2015 *e-mail:* singaporesales@powerint.com

TAIWAN

5F, No. 318, Nei Hu Rd., Sec. 1 Nei Hu Dist. Taipei, Taiwan 114, R.O.C. Phone: +886-2-2659-4570 Fax: +886-2-2659-4550 *e-mail: taiwansales@powerint.com*

UNITED KINGDOM

1st Floor, St. James's House East Street, Farnham Surrey, GU9 7TJ United Kingdom Phone: +44 (0) 1252-730-141 Fax: +44 (0) 1252-727-689 *e-mail: eurosales* @powerint.com

APPLICATIONS HOTLINE World Wide +1-408-414-9660

APPLICATIONS FAX World Wide +1-408-414-9760