PFC Device Corporation

the following features are made possible in a single device:

Major ratings and characteristics

Characteristics	Values	Units
$\mathrm{I}_{\text {F(AV) }}$ Rectangular Waveform	20	A
$\mathrm{~V}_{\text {RRM }}$	200	V
$\mathrm{~V}_{\mathrm{F}} @ 10 \mathrm{~A}, \mathrm{Tj}=125^{\circ} \mathrm{C}$	0.74	V, typ
Tj (operating/storage)	-65 to 175	${ }^{\circ} \mathrm{C}$

ELECTRICAL:

* Lower Forward Voltage Drop
* Reliable High Temperature Operation
* Softest, fast switching capability
* $175^{\circ} \mathrm{C}$ Operating Junction Temperature
* Lead Free Finish, RoHS Compliant

Device optimized for lower forward voltage drop to maximize efficiency in Power Supply applications

MECHANICAL:

* Molded Plastic TO-247 packages
* Weight : 0.20 ounces (5.60 grams)

ESAD9202		
TO-247		
DIM	MIIN	MAX
A	4.70	5.30
A1	2.10	2.60
b	1.00	1.40
b1	2.80	3.20
b2	1.80	2.20
c	0.50	0.80
c1	1.90	2.10
D	15.70	16.30
E1	3.60 REF.	
E2	3.80 REF.	
L	40.90	41.90
L1	24.60	26.60
L2	21.00	22.00
φ	7.00	7.40
e	5.50 TYP.	
H	$6.00 R E F$.	
h	$2.70 R E F$	
ALL Dimensions in millimeter		

Maximum Ratings and Electrical Characteristics

(at $25^{\circ} \mathrm{C}$ unless otherwise specified)

	SYMBOL			UNITS
DC Blocking Voltage Working Peak Reverse Voltage Peak Repetitive Reverse Voltage	$\begin{gathered} \mathrm{V}_{\mathrm{RM}} \\ \mathrm{~V}_{\mathrm{RWM}} \\ \mathrm{~V}_{\mathrm{RRM}} \end{gathered}$	200		Volts
Average Rectified Forward Current (Rated V_{R}-20Khz Square Wave) - 50% duty cycle	Io	20		Amps
Peak Forward Surge Current - 1/2 60hz	$\mathrm{I}_{\text {FSM }}$	250		Amps
Peak Repetitive Reverse Surge Current (2uS-1Khz)	$\mathrm{I}_{\text {RRM }}$	1		Amps
Instantaneous Forward Voltage (per leg) $\begin{aligned} & I_{F}=10 A ; T_{J}=25^{\circ} \mathrm{C} \\ & I_{F}=10 \mathrm{~A} ; \mathrm{T}_{J}=125^{\circ} \mathrm{C} \end{aligned}$	$V_{F}{ }^{*}$	$\begin{aligned} & \text { Typ } \\ & 0.84 \\ & 0.74 \end{aligned}$	$\begin{aligned} & \text { Max } \\ & 0.95 \\ & 0.85 \end{aligned}$	Volts
Maximum Instantaneous Reverse Current at Rated $\begin{aligned} & V_{R M} \\ & T_{j}=25^{\circ} \mathrm{C} \\ & T_{j}=125^{\circ} \mathrm{C} \end{aligned}$	I_{R}	$\begin{gathered} \text { Typ } \\ 80 \\ 1.2 \\ \hline \end{gathered}$	$\begin{gathered} \text { Max } \\ 200 \\ 15 \end{gathered}$	$\begin{aligned} & \mathrm{uA} \\ & \mathrm{~mA} \\ & \hline \end{aligned}$
Maximum Reverse Recovery Time (at $\mathrm{I}_{\mathrm{F}}=0.1 \mathrm{~A}, \mathrm{I}_{\mathrm{R}}=0.2 \mathrm{~A}$, Irec=0.05A)	Trr	40		nS
Maximum Rate of Voltage Change (at Rated V_{R})	dv/dt	10,000		V/uS
Maximum Thermal Resistance JC (per leg) Package = TO-247	$\mathrm{R}_{\text {thJc }}$	1.5		${ }^{\circ} \mathrm{C} / \mathrm{W}$
Operating Junction Temperature	T_{J}	-65 to +175		${ }^{\circ} \mathrm{C}$
Storage Junction Temperature	$\mathrm{T}_{\text {STG }}$	-65 to +175		${ }^{\circ} \mathrm{C}$

* Pulse width < 300 uS, Duty cycle $<2 \%$
${ }^{*}$ Conduction Loss (Pcond) $=\mathrm{Vto} \times \mathrm{I}_{\mathrm{F}(\mathrm{av})}+\mathrm{rd}^{\mathrm{I}} \mathrm{I}_{\mathrm{F}}{ }^{2}{ }_{(\mathrm{RMS})}=0.747 \times \mathrm{IF}_{(\mathrm{av})}+0.0092 \times \mathrm{IF}^{2}{ }_{(\mathrm{RMS})}$
$\mathrm{I}_{\text {F(av) }}$: average forward current in the diode
$I_{F(R M S)}: R M S$ forward current in the diode.

- PFC Device Corporation

Figure 1: Current Derating, Case

Figure 3: Typical Reverse Current

Figure 5: Typical Junction Capacitance

Figure 2: Maximum Repetitive Surge Current

Figure 4: Typical Forward Voltage

Figure 6: Forward Power Loss characteristics

Note : Formula used $\mathrm{T}_{\mathrm{C}}=\mathrm{Tj}-\left(\mathrm{Pd}+\mathrm{Pd}_{\mathrm{REV}}\right) \times \mathrm{Rthj}_{\mathrm{C}}$
$P d=$ Forward power loss $=I_{F(A V)} \times V_{F M}$ at $\left(I_{F(A V)} / D\right)$ (see figure 6) $\mathrm{Pd}_{\mathrm{REV}}=$ Inverse power loss $=\mathrm{V}_{\mathrm{R} 1} \times \mathrm{I}_{\mathrm{R}}(1-\mathrm{D}) ; \mathrm{I}_{\mathrm{R}}$ at $\mathrm{V}_{\mathrm{R} 1}=10 \mathrm{~V}$

Ordering information

Part Number	Case	Packaging
ESAD9202	TO-247	30 pieces / tube
ESAD9202H	TO-247	30 pieces / tube

Note: For Halogen Free molding compound, add " H " suffix to part number above.

Marking information

ESAD9202 $=$ Product Type Marking Code
YYWW = Date Code
$Y Y=$ Last two digits of year
WW = Week code
AB = Assembly code
$H=$ Halogen Free (N/A = common molding compound)

[^0]
[^0]: PFC Device Corp. reserves the right to make changes without further notice to any products herein. PFC Device Corp. makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does PFC Device Corp. assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in PFC Device Corp. data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typical" must be validated for each customer application by customer's technical experts. PFC Device Corp. does not convey any license under its patent rights nor over time. All operating parameters, including "Typical" must be validated for each customer application by customer's technical experts. PFC Device Corp. does not convey any license under its patent rights nor
 the rights of others. PFC Device Corp. products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or the rights of others. PFC Device Corp. products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support sustain life, or for any other application in which the failure of the PFC Device Corp. product could create a situation where personal injury or death may occur. Should Buyer purchase or use PFC Device Corp.
 products for any such unintended or unauthorized application, Buyer shall indemnify and hold PFC Device Corp. and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, products for any such unintended or unauthorized application, Buyer shall indemnify and hold PFC Device Corp. and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that PFC Device Corp. was negligent regarding the design or manufacture of the part..

