

Two Channel Buck
CCS User Guide

Version 1.1
May 2008

 Revised – June 2008

Table of Contents

2 TMS320C2000™ Systems Applications Collateral

Table of Contents
Table of Contents.. 2
Introduction .. 3
Lab 1: PWM Generation / Open-Loop Control .. 4
Lab 2: Closed-Loop Control... 14
Lab 3: Tuning the Loop .. 24
References... 31

 Introduction

 C2000 System Applications Collateral 3

Introduction
The TwoChannelBuck EVM project provides a straightforward method of learning about digital
power with Texas Instruments’ F28xxx series digital signal controllers (DSC). In this document
you will find lab procedures that explore the EVM’s features inside Code Composer Studio. The
first lab introduces the software framework and will run the TwoChannelBuck board in an open
loop configuration. The next lab shows how the framework can close the loop and teaches how
the TI 28xxx DSC can be used to provide sequencing and a soft start-up. Finally, the last lab
shows how the control loop is designed and will allow you to tune the transient response via P, I,
D parameters.

The TwoChannelBuck EVM project features:
• 10 Amp SyncBuck DC/DC power stages (no heat-sink required) with built-in MOSFET

drivers
• Active load for transient response testing (switching timing controlled by ECAP periph-

eral)
• Voltage input and output measurements via ADC
• Temperature measurement for each channel monitored by ADC
• Current measurement for each channel monitored by ADC
• Over-Current protection and fault flag detection via GPIO
• Closed loop digital control with voltage feedback using F28xxx on-chip ePWM and ADC
• Optional ePWM signals looped back as ADC inputs provides a simple low cost scope to

view waveforms in CCS
• 8 x LED indicators are great for diagnostics and fault status
• UART communications header available for Host control
• Host GUI provides a friendly way to control / demo the application, based on open source

C# freeware (installed with this package)
• Hardware Developer’s package includes Schematics, Bill of materials, Gerber files,…etc

(installed with this package)

The TwoChannelBuck project is built within the Texas Instruments’ F28xxx System Framework
and is configurable to run on any F28xxx target DSC. The project contains C source files which
handle the initialization and background tasks, and a time-critical ISR code written in assembly
using library modules. Further information on what the System Framework is and how it works
can be found in the SystemFrameworkOverview guide.

For all information on hardware and software setup, please read QSG-TwoChannelBuck noted
in the references below.

Caution
During experimentation the power resistors (Load1 – see Hardware overview) may become very
HOT if Ch-1 output voltage is left running for extended time (avoid if possible). Please DO NOT
TOUCH, allow the resistors to cool down first.

Lab 1: PWM Generation / Open-Loop Control

4 TMS320C2000™ Systems Applications Collateral

Lab 1: PWM Generation / Open-Loop Control
 Objective

The objective of this lab exercise is to demonstrate the topics discussed in this module and control
the buck output voltage using simple PWM duty cycle adjustments without feedback. Since this
implementation is open-loop and therefore has no requirement for high speed feedback, the ADC
will be used to measure various values for instrumentation purposes only. These values will be
displayed using CCS. The PWM duty cycle will be adjusted using watch windows. In this lab,
you will:

• Control Buck output voltage using simple PWM duty cycle adjustment without feedback

• Use CCS watch window features to conveniently adjust PWM duty cycle

 Project Overview

Lab exercises 1, 2, and 3 all use the TwoChannelBuck project. It makes use of the “C-
background/ASM-ISR” framework. Futher information on the framework can be found in the
SystemFrameworkOverview guide. In these lab exercises EPWMs 1 and 2 are used to drive
buck stages Channel 1 and Channel 2, respectively.

The key framework files used in this project are:

TwoChannelBuck-Main.c – this file is used to initialize, run, and manage the application.
This is the “brains” behind the application.

TwoChannelBuck-DevInit_F28xxx.c – this file is responsible for a one time
initialization and configuration of the device, and includes functions such as setting up the clocks,
PLL, GPIO, etc. This file is specific to a family of devices (ex. F280x, F2833x, etc).

TwoChannelBuck-ISR.asm – this file contains all time critical “control type” code. This file
has an initialization section that is executed one time by the C-callable assembly subroutine
_ISR_Init. The file also contains the _ISR_Run routine which executes at the same rate as
the PWM timebase which is used to trigger it.

TwoChannelBuck-Settings.h – this file is used to set global definitions for the project (ie.
build options). Note that it is linked to both TwoChannelBuck-Main.c and
TwoChannelBuck-ISR.asm.

 Lab 1: PWM Generation / Open-Loop Control

 C2000 System Applications Collateral 5

The Power Library functions (modules) are “called” from this framework. Library modules may
have both a C and an assembly component. In this lab exercise, the following C and
corresponding assembly modules are used:

C configuration function ASM initialization macro ASM Run time macro

BuckSingle_CNF() BuckSingle_DRV_INIT n BuckSingle_DRV n

ADC_CascSeqCNF() none none

The TwoChannelBuck EVM consists of two identical buck power stages. The input bus voltage
for both stages is 9V. Shown below is a diagram of the Power EVM and some key features.

9V In DC power supply from plug pack (12V supply may be used as well)

Main Pwr SW1 - Master power switch for entire EVM

DC Bus SW2 - Power switch for Vin to buck stages only. When off the F2808 DIMM
controller card will still operate (next to the DC bus switch is a resettable fuse)

Buck 1, 2 Buck power stage modules with temperature/current measurement and over
current protection

Load 1 Buck converter output for Channel 1 is tied to two 2Ω resistors in parallel. If
desired, load 1 can be desoldered and a terminal block as in Channel 2 can be
reinstalled.

9V In

Main Pwr (SW1) Load 2 Load 1

DC Bus
(SW2)

DMM

V1/V2
Select
(SW3)

Active Load

Buck 2 Buck 1 CommsBoot Jumpers

Emulator
Power
Jumper

Lab 1: PWM Generation / Open-Loop Control

6 TMS320C2000™ Systems Applications Collateral

Load 2 Load terminals and/or buck converter output - next to each terminal block is a
light bulb or “visual” load (these draw approx 250 mA hot)

Active Load Software controlled switched load (connected to output of buck 1 only)

DMM Digital Multi-Meter (has a range of 0~20V, with resolution of 10 mV and is
used to measure output voltage of buck conterters)

V1/V2 Select SW3 - selects the display of the DMM between output voltage of buck 1 and 2

Comms Serial communications UART (connects to an optional GUI, not used in lab
exercises)

Emulator
Power Jumper

Sets the voltage sent to power the emulator. No jumper means no power will be
sent to an emulator, a jumper at “5V” will power the emulator with 5V, and a
jumper at “3V3” will power the emulator with 3.3V.

Boot Jumpers Controls how the F280x will boot.
• If no jumpers are placed the target will boot from flash.
• If a jumper is placed at “34”, the target will boot from the SCI
• If a jumper is placed at “29” and “34”, the target will boot from RAM

The key signal connections between the F2808 Digital Signal Controller and the 2 buck stages are
listed in the table below. For reference a portion of the schematic is also given.

Signal Name Description Connection to target
DSC

EPWM-1A PWM Duty control signal for buck stage 1 GPIO-00

EPWM-2A PWM Duty control signal for buck stage 2 GPIO-02

VoutFB-1 Voltage feedback for buck stage 1 ADC-B0

VoutFB-2 Voltage feedback for buck stage 2 ADC-A0

Iout-1 Current monitor / measurement buck stage 1 ADC-B1

Iout-2 Current monitor / measurement buck stage 2 ADC-A1

Temp-1 Temperature monitor / measurement buck stage 1 ADC-B2

Temp-2 Temperature monitor / measurement buck stage 2 ADC-A2

Ifault-1 Over-Current flag, digital output from buck stage 1 GPIO-12

Ifault-2 Over-Current flag, digital output from buck stage 2 GPIO-13

 Lab 1: PWM Generation / Open-Loop Control

 C2000 System Applications Collateral 7

Lab 1: PWM Generation / Open-Loop Control

8 TMS320C2000™ Systems Applications Collateral

 Lab Exercise Overview

The software in Lab1 has been configured to independently adjust the duty cycle of EPWM-1A
and EPWM-2A. “Net” variable names Duty[1] and Duty[2] have been declared and
“connected” to the inputs of BuckSingle_DRV macro. Using the watch window Duty[1] and
Duty[2] can be directly adjusted. Below is the system diagram for Lab1.

In the TwoChannelBuck project the assembly ISR _ISR_Run routine is triggered by EPWM1.
This is where the BuckSingle_DRV macros are executed. Therefore, the PWM update rate is
equal to the PWM frequency. Since this system is running open-loop, there is not a requirement
for high speed feedback. As a result, the ADC function ADC_CascSeqCNF() is called in the C
background code during initialization, and the ADC measured values are only used for
instrumentation purposes. The update rate can be much slower with no need to be synchronized to
the PWM or ISR. The ADC values are read directly from the ADC result registers
(AdcMirror.ADCRESULTn) by the background C code.

A task state-machine has been implemented as part of the background code. Tasks are arranged in
groups (A1, A2, A3…, B1, B2, B3…, C1, C2, C3…). Each group is executed according to 3
CPU timers which are configured with periods of 1 ms, 5 ms, and 7.5 ms respectively. Within
each group (e.g. “B”) each task is run in a “round-robin” manner. For example, group B executes
every 5 ms and there are 3 tasks in group B. Therefore, each “B task” will execute once every 15
ms.

In this lab, “A tasks” are used to provide channel enabling, soft start and sequencing for the
EVM. In the code the function SerialHostComms() is used to allow an external GUI to edit the
project’s variables. This GUI is not used for these labs, however more information on its use can
be found in the QSG-TwoChannelBuck-GUI guide.

System dashboard measurements are conveniently done by group “B tasks” (i.e. B1 – voltage
measurement, B2 – temperature measurement, and B3 – current measurement). These tasks
convert user inputs/outputs (designated by the Gui_ prefix) from/to a Q format variable and put it
into a Q15 format that the framework uses. This is in order for the user to use real units (ie V/ms,

 Lab 1: PWM Generation / Open-Loop Control

 C2000 System Applications Collateral 9

amps) while still saving precision. The details of each conversion are found in the excel
spreadsheet TwoChannelBuck-Calculations.

In this project “C tasks” are used for slow-tasks such as coefficient update, active load control,
and LED control.

 Procedure

Open a CCS Project
1. Turn on the power (SW1) to the 2-channel buck EVM. Open Code Composer Studio and

maximize it to fill your screen.

2. Open the project TwoChannelBuck.pjt by clicking:

Project Open…

and look in C:\TI_F28xxx_SysSW\TwoChannelBuck\.

3. This project can be configured to create code for multiple target controlCARDs and can
be ran in either flash or RAM. For the labs we will run the F280x in RAM. In the project
window, right-click on TwoChannelBuck.pjt and select “Configurations…”. In the new
window select F280x_RAM, click “Set Active” and then click “Done”.

4. Code Composer Studio can automatically load the output file after a successful build. On
the menu bar click: Option Customize… and select the
“Program/Project/CIO” tab, check “Load Program After Build”.

Also, Code Composer Studio can automatically connect to the target when started. Select
the “Debug Properties” tab, check “Connect to the target at
startup”, then click OK.

Device Initialization, Main, and ISR Files
5. Open and inspect TwoChannelBuck-DevInit.c by double clicking on the filename

in the project window. Confirm that GPIO00 and GPIO02 are configured to be PWM
outputs.

6. Open TwoChannelBuck-Settings.h. For this lab we will use incremental build
option 1. Please edit the file so that INCR_BUILD is defined as 1

(i.e. #define INCR_BUILD 1)

then save the file by clicking:

File Save

Lab 1: PWM Generation / Open-Loop Control

10 TMS320C2000™ Systems Applications Collateral

Note: This should be the only change made to source files for
this lab.

7. Open and inspect TwoChannelBuck-Main.c. Notice the code enabled when
INCR_BUILD is 1. This section of code is shown here for convenience. Additional
comments have been added in italics. Note that the run-time macros are executed at the
PWM rate of 400 kHz.

//--
#if (INCR_BUILD == 1) // Open loop - Channels 1,2
//--
#define prd 250 // Period count = 400 KHz @ 100 MHz
#define NumActvCh 2 // Number of Active Channels

// "Raw" (R) ADC measurement name defines
#define VoutR1 AdcMirror.ADCRESULT0 //
#define VoutR2 AdcMirror.ADCRESULT1 //
#define IoutR1 AdcMirror.ADCRESULT2 //
#define IoutR2 AdcMirror.ADCRESULT3 //
#define TdegR1 AdcMirror.ADCRESULT4 //
#define TdegR2 AdcMirror.ADCRESULT5 //
#define VinR AdcMirror.ADCRESULT6 //

The ChSel array is used as input by function ADC_CascSeqCNF. These values will be used by “B” tasks for dashboard
calculations, and shown in the Watchwindow.
// Channel Selection for Cascaded Sequencer
ChSel[0] = 8; // B0 - Vout1
ChSel[1] = 0; // A0 - Vout2
ChSel[2] = 9; // B1 - Iout1
ChSel[3] = 1; // A1 - Iout2
ChSel[4] = 10; // B2 - Temperature-1
ChSel[5] = 2; // A2 - Temperature-2
ChSel[6] = 11; // B3 - Vin

The 3 configuration functions below are part of the Power Library.
BuckSingle_CNF(1, prd, 1, 0); // ePWM1, Period=prd, Master, Phase=Don't Care
BuckSingle_CNF(2, prd, 0, 0); // ePWM2, Period=prd, Slave, Phase=0
ADC_CascSeqCNF(ChSel, 2, 7, 1); // ACQPS=2, #Conv=7, Mode=Continuous (1)
EPwm1Regs.CMPB = 2; // ISR trigger point
ISR_Init(); // ASM ISR init

Duty[1] and Duty[2] variables will directly control the buck duty cycle. The WatchWindow will be used to quickly change
these values.
Duty[1] = 0x0;
Duty[2] = 0x0;

// Lib Module connection to "nets"
//--
// BuckSingle_DRV connections
Buck_In1 = &Duty[1];
Buck_In2 = &Duty[2];

#endif // (INCR_BUILD == 1)

 Lab 1: PWM Generation / Open-Loop Control

 C2000 System Applications Collateral 11

8. Open and inspect TwoChannelBuck-ISR.asm. Notice the _ISR_Init and
_ISR_Run sections. This is where the PWM driver macro instantiation is done for
initialization and run-time, respectively. The code is shown below for convenience. In
Lab1, incremental build option IB1 is used.

 .if(INCR_BUILD = 1) ; Init time
 BuckSingle_DRV_INIT 1 ; EPWM1A
 BuckSingle_DRV_INIT 2 ; EPWM2A
 .endif

 .if(INCR_BUILD = 1) ; Run time
 BuckSingle_DRV 1 ; EPWM1A
 BuckSingle_DRV 2 ; EPWM2A
 .endif

9. Close the inspected files if desired.

Build and Load the Project
10. Click the “Rebuild All” button and watch the tools run in the build window. The

output file should automatically load.

11. Under Debug on the menu bar click “Reset CPU”, “Restart”, and then “Go
Main”. You should now be at the start of Main().

Setup Watch Window
12. Open the watch window to view the variables used in the project.

Click: View Watch Window on the menu bar.

Click the “Watch 1” tab at the bottom of the watch window. In the empty box in the
"Name" column, type the symbol names from the following screen capture and be sure to
modify the “Radix” as needed.

Lab 1: PWM Generation / Open-Loop Control

12 TMS320C2000™ Systems Applications Collateral

The following table gives a description for the variable names:

Variable Description

Gui_Vin Voltage input measurement (i.e. DC bus) to each buck power stage

Gui_Vout Voltage output of each channel, 3 element array, zeroth element not used

Gui_Iout Current output of each channel, 3 element array, zeroth element not used

Gui_Tdeg Temperature of each power module, 3 element array, zeroth element not
used

Duty[1] Duty cycle input to BuckSingle_DRV 1

Duty[2] Duty cycle input to BuckSingle_DRV 2

Save the Workspace
1. Save the current workspace by naming it Lab1.wks and clicking:

File Workspace Save Workspace As…

and saving in C:\TI_28xxx_SysSW\TwoChannelBuck\

Run the Code – TwoChannelBuck
13. Enable real-time mode by selecting:

Debug Real-time Mode

14. A message box may appear. If so, select YES to enable debug events. This will set bit 1
(DGBM bit) of status register 1 (ST1) to a “0”. The DGBM is the debug enable mask bit.
When the DGBM bit is set to “0”, memory and register values can be passed to the host
processor for updating the debugger windows.

15. Check to see if the windows are set to continuously refresh. Click:

View Real-time Refresh Options…

and check “Global Continuous Refresh”.

16. Run the code by using the <F5> key, or using the Run button on the vertical toolbar, or
using Debug Run on the menu bar.

17. Note that in the watch window all values should be ~ zero, except for temperature, which
should be approximately equal to room temperature of 25° C.

 Lab 1: PWM Generation / Open-Loop Control

 C2000 System Applications Collateral 13

18. Turn on the 9-volt DC bus (SW2) on the 2-channel buck EVM and observe variable
Gui_Vin in the watch-window. It should now be approximately 9V.

19. Increase the value of Duty[1] to approximately 0.11. Power stage buck 1 module output
voltage should be approximately 1V on the DMM. Be sure that SW3 on the EVM is
positioned to select Ch1. With two 2Ω load resistors placed in parallel the equivalent
resistance across terminal 1 is 1Ω. The open-loop voltage for Channel 1 is approximately
given by:

Voltage Value of
Duty[1]

1V 0.11

2V 0.22

3V 0.33

20. Try the same adjustment on Duty[2]. Be sure SW3 on the EVM is positioned to select
Ch2. Note that Channel 2 buck is lightly loaded with a lamp (2~3Ω) and hence a slightly
lower Duty[2] value will give the same output voltage as in the Ch1 case. This is
expected since we are running the controller in an open loop.

21. Of general interest – during duty/voltage adjustments observe the various watch window
variables such as voltage, current and temperature. Gui_Vout should reflect
approximately the same value as the DMM display. The current measurement is not very
precise as it is designed to measure a range up to 15A. Hence at low current levels
accuracy will be quite poor. Temperature should track quite well and the channel
supplying the most power will show an observable temperature increase.

22. Turn off the 9-volt DC bus (SW2) on the 2-channel buck EVM. (Do not turn off the
main power SW1).

23. Fully halt the DSP in real-time mode. First, halt the processor by using Shift <F5>, or
using the Halt button on the vertical toolbar, or by using Debug Halt. Then click
Debug Real-time Mode and uncheck the “Real-time mode” to take the
DSP out of real-time mode.

24. Do Not Close Code Composer Studio or it will be necessary to setup the project again
for the next lab exercise!

End of Exercise

Lab 2: Closed-Loop Control

14 TMS320C2000™ Systems Applications Collateral

Lab 2: Closed-Loop Control
 Objective

The objective of this lab exercise is to demonstrate the topics discussed in this module and
regulate the output voltage of a buck power stage using closed-loop feedback control realized in
the form of a software coded loop. Soft-start and shut-down management will be explored using
the CCS watch window. ADC management for high-speed feedback and slow instrumentation
will be utilized. In this lab you will:

• Regulate buck outputs using Voltage Mode Control (VMC) with closed-loop feedback

• Use soft-start and sequencing fuctions to ensure an “orderly” voltage ramp-up/down

• Adjust the soft-start profile and target voltage using the CCS watch window

 Project Overview

The following Power Library modules will be used in this lab exercise. (Note: these are the same
library modules used in Lab1 exercise with the addition of more library modules).

C configure function ASM initialization macro ASM Run time macro

BuckSingle_CNF() BuckSingleHR_DRV_INIT n BuckSingleHR_DRV n

ADC_DualSeqCNF() ADC_NchDRV_INIT n ADC_NchDRV n

None ControlLaw_2P2Z_INIT n ControlLaw_2P2Z n

None DataLogTST_INIT n DataLogTST n

Below is a description and notes for the Power Library modules used in this lab exercise.

BuckSingleHR_DRV This is the high resolution PWM version of BuckSingle used in Lab2.
The C configure function (BuckSingle_CNF) is applicable for both
high-resolution and non-high-resolution versions of macro.

ADC_NchDRV Reads 1st N ADC result registers every PWM cycle and stores to N
consecutive memory locations accessible by C. In Lab2, N=1 (i.e. a
single voltage is measured as feedback).

ControlLaw_2P2Z This is a 2nd order compensator realized from an IIR filter structure.
The 5 coefficients needed for this function are declared in the C
background loop as an array of longs. This function is independent of
any peripherals and therefore does not require a CNF function call.

 Lab 2: Closed-Loop Control

 C2000 System Applications Collateral 15

DataLogTST Data logging function with time-stamp trigger input. Although not
needed in the application itself, it provides a convenient way to
visualize the output voltage in a CCS graph window. In Lab3 the data
logger will be useful in displaying an output voltage transient.

 Lab Exercise Overview

The software in Lab2 has been configured to provide closed-loop voltage control for Channel 1
and Channel 2 of the buck EVM. Additionally, datalogging of the Channel 1 output voltage can
be displayed in a CCS graph window. Below is the system diagram for Channel 1 in Lab2.

Note that the system diagram for Channel 2 would look exactly the same except for two key
changes:

• The index of all arrayed variables will be 2 instead of 1

• Channel 2 is not configured in software to have a datalogger and therefore it can not
display a transient graph

The closed-loop consists of only three modules – ADC_NchDRV, ControlLaw_2P2Z, and
BuckSingleHR_DRV. When the code is runing these modules execute as in-line code (no
decision making) within the ISR_Run routine which is triggered at the PWM rate. To ensure
proper operation, Vref is kept at zero until a request is received to enable the output voltage. It is
important for a power supply to have a proper start-up and shut-down routine. This is managed by
the soft-start and sequencing code which executes in the main background C code

Lab 2: Closed-Loop Control

16 TMS320C2000™ Systems Applications Collateral

TwoChannelBuck-Main.c. This code ensures that Vref can never have a step change, as
direct modification of Vref is not allowed. Vref can only be adjusted indirectly via a target value
request. This value will be reached at a given slew-rate. The slew-rate is programmable with
delay-on and delay-off time parameters which are useful for staggered sequencing of multiple
voltage rails.

In Lab2, the target voltage, slew-rate and delay-on/off parameters are conveniently modified via a
watch window. The soft-start and sequencing code is “scaleable” and can manage multiple
voltage rails, for example 2, 3…10 or more Vrefs. The interface to this code is via several integer
arrays and integer flags. The array index “n” is used to designate the channel number (i.e. n=1 for
channel 1, n=2 for channel 2…etc.) Although in C an index of n=0 is valid, it is not used here.
Below is a summary of the arrays and their usage.

Gui_Vset[n] Desired output target voltage in Q12 format

ChannelEnable[n]
Enables (allows) voltage output to reach target value
e.g. ChannelEnable[1]=1, turn channel 1 “on”
e.g. ChannelEnable[1]=0, turn channel 1 “off”

Gui_SlewStep[n]
Step size or rate at which the target voltage is ramped to. Displayed in
Q13 with units of V/ms

Gui_OnDelay[n]
Delay time to turn on from the “global” start command (StartUp=1)
Displayed in Q0 format with units of ms.

Gui_OffDelay[n]
Delay time to turn off from the “global” stop command (StartUp=0)
Displayed in Q0 format with units of ms.

StartUp
Global turn on/off command. Used to synchronize/sequence all
channels
e.g. StartUp=1, global turn on command
e.g. StartUp=0, global turn off command

 Procedure

Open a CCS Project
1. Code Composer Studio should still be running from the previous lab exercise. If it is not,

then it will be necessary to setup the debug environment and project from the previous
lab exercise. This can be done by simply loading the last saved workspace. Click:

File Workspace Load Workspace

In the new window browse open:

C:\TI_28xxx_SysSW\TwoChannelBuck\Lab1.wks

 Lab 2: Closed-Loop Control

 C2000 System Applications Collateral 17

Device Initialization, Main, and ISR Files
2. Open TwoChannelBuck-Settings.h. For this lab we will use incremental build

option 2. Please edit the file so that INCR_BUILD is defined as 2

(i.e. #define INCR_BUILD 2).

then save the file by clicking:

File Save

Note: This should be the only change made to source files for
this lab.

3. Open and inspect TwoChannelBuck-Main.c by double clicking on the filename in
the project window. Notice the code enabled when INCR_BUILD is 2. This section of
code is shown here for convenience. Comments have been added in italics.

//--
#if (INCR_BUILD == 2) // Closed Loop CH1 & CH2, with SoftStart using separate lib
// blocks
//--
//#define prd 500 // Period count = 200 KHz @ 100 MHz
#define prd 333 // Period count = 300 KHz @ 100 MHz
//#define prd 250 // Period count = 400 KHz @ 100 MHz
#define NumActvCh 2 // Number of Active Channels

// "Raw" (R) ADC measurement name defines, ADC result registers are mirrored
// in single cycle read memory for faster access.
#define VoutR1 AdcMirror.ADCRESULT0
#define VoutR2 AdcMirror.ADCRESULT1

#define IoutR1 AdcMirror.ADCRESULT8
#define IoutR2 AdcMirror.ADCRESULT9
#define TdegR1 AdcMirror.ADCRESULT10
#define TdegR2 AdcMirror.ADCRESULT11
#define VinR AdcMirror.ADCRESULT12

#define tPHS2 37 // Phase offset from Master EPWM

ADC Sequencer 1 – Vout[1] and Vout[2] used every PWM cycle
 // ADC Channel Selection for Sequencer-1
 ChSel[0] = 8; // B0 – VoutR1
 ChSel[1] = 0; // A0 – VoutR2

ADC Sequencer 2 – Instrumentation only, round robin scheme
 // ADC Channel Selection for Sequencer-2
 ChSel[8] = 9; // B1 – IoutR1
 ChSel[9] = 1; // A1 – IoutR2
 ChSel[10] = 10; // B2 – TdegR1
 ChSel[11] = 2; // A2 – TdegR2
 ChSel[12] = 11; // B3 - Vin

Soft-Start parameters for channel 1 & 2

Gui_OnDelay[1] = 0;
 Gui_OnDelay[2] = 1000; // 1 second delay

 Gui_OffDelay[1] = 1000; // 1 second delay
 Gui_OffDelay[2] = 0;

 Gui_Vset[1] = 7413; // 1.8 V
 Gui_Vset[2] = 13557; // 3.3 V

Lab 2: Closed-Loop Control

18 TMS320C2000™ Systems Applications Collateral

 Gui_SlewStep[1] = 2048; // 0.25 V/ms
 Gui_SlewStep[2] = 2048; // 0.25 V/ms

Used for Scope feature via Graph window (Setup for CH1)
 DataLogTrigger = 980000;
 ScopeGain = 1;
 ScopeACmode = 0; // DC mode initially

PWM and ADC configure functions
 BuckSingle_CNF(1, prd, 1, 0); // ePWM1, Period=prd, Master, Phase=0
 BuckSingle_CNF(2, prd, 0, tPHS2); // ePWM2, Period=prd, Slave, Phase=tPHS2
 EPwm1Regs.CMPB = 193; // tCMPB1 - ISR trigger point

// EPwm2Regs.CMPB = 120; // tCMPB2 - ADC SOS trigger point
 EPwm2Regs.CMPB = 60; // tCMPB2 - ADC SOS trigger point
 ADC_DualSeqCNF(ChSel, 1, 2, 1); // ACQPS=1, Seq1#Conv=2, Seq2#Conv=1
 ISR_Init(); // ASM ISR init

// Lib Module connection to "nets"
//--
// ADC feedback connections
 ADC_Rslt = &AdcNetBus[1]; // point to 1st element, i.e. AdcCh0

// ------------------------- CHANNEL-1 --------------------------
// CNTL_2P2Z(1) connections
 CNTL_2P2Z_Ref1 = &VrefNetBus[1]; // point to Vref1
 CNTL_2P2Z_Out1 = &UoutNetBus[1]; // point to Uout1
 CNTL_2P2Z_Fdbk1 = &AdcNetBus[1]; // 1st conv result
 CNTL_2P2Z_Coef1 = &Coef2P2Z_1[0]; // point to first coeff of 1st loop
// BUCK_DRV connections
 Buck_In1 = &UoutNetBus[1]; // Ch1 = ePWM1A

// ------------------------- CHANNEL-2 --------------------------
// CNTL_2P2Z(2) connections
 CNTL_2P2Z_Ref2 = &VrefNetBus[2]; // point to Vref2
 CNTL_2P2Z_Out2 = &UoutNetBus[2]; // point to Uout2
 CNTL_2P2Z_Fdbk2 = &AdcNetBus[2]; // 2nd conv result
 CNTL_2P2Z_Coef2 = &Coef2P2Z_2[0]; // point to first coeff of 2nd loop
// BUCK_DRV connections
 Buck_In2 = &UoutNetBus[2]; // Ch2 = ePWM2A

Datalogger is an optional feature, not required for loop to run
// Data Logger connections, DLTST = DataLogTimeStampTrigger
 DLTST_In1 = &AdcNetBus[1];
 DLTST_TimeBase1 = &ECap1Regs.TSCTR;
 DLTST_TimeStampTrig1 = &DataLogTrigger;
 DLTST_DcOffset1 = 0;
 DLTST_Gain1 = ScopeGain;

Compare B event setup to trigger both Sequencer 1 & 2 simultaneously, note: Seq1 has priority
// Trigger ADC SOCA & B from EPWM1
//--
 EPwm1Regs.ETSEL.bit.SOCASEL = ET_CTRU_CMPB; // SOCA on CMPB event
 EPwm1Regs.ETSEL.bit.SOCBSEL = ET_CTRU_CMPB; // SOCB on CMPB event
 EPwm1Regs.ETSEL.bit.SOCAEN = 1; // Enable SOC on A group
 EPwm1Regs.ETSEL.bit.SOCBEN = 1; // Enable SOC on B group
 EPwm1Regs.ETPS.bit.SOCAPRD = ET_1ST; // Trigger on every event
 EPwm1Regs.ETPS.bit.SOCBPRD = ET_1ST; // Trigger on every event

#endif // (INCR_BUILD == 2)

 Lab 2: Closed-Loop Control

 C2000 System Applications Collateral 19

4. Open and inspect TwoChannelBuck-ISR.asm. Notice the _ISR_Init and
_ISR_Run sections. This is where the PWM driver macro instantiation is done for
initialization and run-time, respectively. The code is shown below for convenience. In
Lab2, incremental build option 2 is used. Note the order for the run time macros:
1) Measure feedback
2) Compensate
3) Update PWM

Also, the ADC is not run in continuous mode, but rather in SOC trigger mode, and
therefore needs to be reset every cycle.

;--- Initialization Time
.if(INCR_BUILD = 2)
 ADC_NchDRV_INIT 2 ; 2 Channel, (i.e. N=2)
 ControlLaw_2P2Z_INIT 1
 ControlLaw_2P2Z_INIT 2
 BuckSingleHR_DRV_INIT 1 ; EPWM1A
 BuckSingleHR_DRV_INIT 2 ; EPWM2A
 DataLogTST_INIT 1 ; 1 Channel Data logger
.endif
;---

;--- Run Each Time ISR is Ran
.if(INCR_BUILD = 2)
 ADC_NchDRV 2 ; 1 Channel, (N=2) (Measure)
 ControlLaw_2P2Z 1 (Compensate)
 ControlLaw_2P2Z 2
 BuckSingleHR_DRV 1 ; EPWM1A (Update)
 BuckSingleHR_DRV 2 ; EPWM2A
 DataLogTST 1 ; 1 Channel Data logger
ADC_Reset:
 MOVW DP,#ADCTRL2>>6 ; Reset ADC SEQ
 MOV @ADCTRL2,#0x4101 ; RST_SEQ1=1, SOCA-SEQ1=1, SOCB-SEQ2=1
.endif
;---

5. Close the inspected files if desired.

Build and Load the Project
6. Click the “Rebuild All” button and watch the tools run in the build window. The

output file should automatically load.

7. Under Debug on the menu bar click “Reset CPU”, “Restart”, and then “Go
Main”. You should now be at the start of Main().

Setup Watch Window and Graph
8. Another watch window will be opened in addition to the one used in the previous lab

exercise. Open the watch window to view the variables used in the project.

Click: View Watch Window on the menu bar.

Lab 2: Closed-Loop Control

20 TMS320C2000™ Systems Applications Collateral

Click the “Watch 1” tab at the bottom of the watch window. In the empty box in the
"Name" column, type the symbol names from the following screen capture and be sure to
modify the “Radix” as needed.

Note: ScopeGain, ScopeACmode, ActiveLoad, Pgain, Igain, and Dgain will be
explained and used in the next lab exercise.

The following table gives a description for the variable names:

Variable Description

ChannelEnable Channel enable array

Gui_Vset Voltage target array

Gui_OnDelay DelayOn array

Gui_OffDelay DelayOff array

Gui_SlewStep Ramp step size array

StartUp Global turn-on/turn-off integer flag

9. Open and setup a time graph windows to plot the data log buffer (ADC result register).
This graph will show the output voltage of Channel 1.

Click: View Graph Time/Frequency… and set the following values:

 Lab 2: Closed-Loop Control

 C2000 System Applications Collateral 21

Select OK to save the graph options.

Save the Workspace
10. Save the current workspace by naming it Lab2.wks and clicking:

File Workspace Save Workspace As…

and saving in C:\TI_28xxx_SysSW\TwoChannelBuck\.

Run the Code – TwoChannelBuck
11. Enable real-time mode by selecting:

Debug Real-time Mode

12. A message box may appear. If so, select YES to enable debug events. This will set bit 1
(DGBM bit) of status register 1 (ST1) to a “0”. The DGBM is the debug enable mask bit.
When the DGBM bit is set to “0”, memory and register values can be passed to the host
processor for updating the debugger windows.

13. Check to see if the windows are set to continuously refresh. Click:

View Real-time Refresh Options…

and check “Global Continuous Refresh”.

Lab 2: Closed-Loop Control

22 TMS320C2000™ Systems Applications Collateral

14. Run the code by using the <F5> key, or using the Run button on the vertical toolbar, or
using Debug Run on the menu bar.

15. Turn on the 9-volt DC bus (SW2) on the 2-channel buck EVM and observe variable
Gui_Vin in the watch-window. It should now be approximately 9V. Also the Graph
window should show a trace hovering at “0V”.

16. In the watch window turn on Channel 1 output by setting ChannelEnable[1]=1.
Power stage buck 1 module output voltage should ramp quickly to ~1.8V (be sure that
SW3 on the EVM is positioned to select Ch1). Note that directly turning-on (enabling) an
individual channel ignores the Gui_OnDelay and Gui_OffDelay parameters since
synchronization to a global trigger is not utilized.

17. Enable Channel 2 output by setting ChannelEnable[2]=1. Power stage buck 2
module output voltage should new ramp quickly to ~3.3V (this can be verified by setting
SW2 to select Ch2 and checking the value on the display). Also note that LMP1, the load
for Channel 2, is now lit.

18. Decrease the value of Gui_Vset[1] and Gui_Vset[2] to approximately 1.0. The
voltage output of both power stage buck 1 and power stage buck 2 should now be
updated to 1.0V. In the watch windows notice that Gui_Iout[2] is less than
Gui_Iout[1]. This is because the LMP1, the load of Channel 2, has more resistance
than the 1Ω resistance found across Channel 1. When you are done turn off Channel 1
and Channel 2 by setting ChannelEnable[1]=0 and ChannelEnable[2]=0.

19. Both channels can also be enabled or disabled by using the global turn-on flag –
StartUp. This flag allows for time sequencing of Channel 1 and 2 and uses
Gui_OnDelay and Gui_OffDelay to give the delay before turning on/off each
channel. These values may be modified in the watch window and are set by default to:

Gui_OnDelay[1] = 0;
Gui_OnDelay[2] = 1000; // 1 second delay

Gui_OffDelay[1] = 1000; // 1 second delay
Gui_OffDelay[2] = 0;

20. For example, modify these values as follows:

Gui_OnDelay[1]=1000
Gui_OnDelay[2]=5000

Gui_OffDelay[1]=7500
Gui_OffDelay[2]=2500

StartUp=1

This will trigger the global turn flag. Then Channel 1 will start ramping up after 1000 ms
and Channel 2 will start ramping after 5000 ms. Setting StartUp=0 will trigger a
global turn off which will cause Channel 1 to ramp down after 7500 ms and Channel 2 to
begin ramping down after 2500 ms.

 Lab 2: Closed-Loop Control

 C2000 System Applications Collateral 23

21. The ramp-up and ramp-down rates can also be modified for either Channel 1 or Channel
2. In this lab code, up and down ramp rates are the same. The ramp rate for Channel 1 is
set by the parameter Gui_SlewStep[1], and the ramp rate of Channel 2 is set by
Gui_SlewStep[2] The default value for both is 0.25 V/ms. Change both to 0.005
V/ms in the watch window and view the result. Follow these steps:

Gui_SlewStep[1]=0.005
Gui_SlewStep[2]=0.005

ChannelEnable[1]=1 Outputs should now ramp up at slow rate
ChannelEnable[2]=1

ChannelEnable[1]=0 Outputs should also ramp down at a slow rate
ChannelEnable[2]=0

22. Turn off the 9-volt DC bus (SW2) on the 2-channel buck EVM. (Do not turn off the
main power SW1).

23. Fully halt the DSP in real-time mode. First, halt the processor by using Shift <F5>, or
using the Halt button on the vertical toolbar, or by using Debug Halt. Then click
Debug Real-time Mode and uncheck the “Real-time mode” to take the
DSP out of real-time mode.

24. Do Not Close Code Composer Studio or it will be necessary to setup the debug
environment windows again for the next lab exercise!

End of Exercise

Lab 3: Tuning the Loop

24 TMS320C2000™ Systems Applications Collateral

Lab 3: Tuning the Loop
 Objective

The objective of this lab exercise is to demonstrate the topics discussed in this module and tune
the closed-loop buck power stage for improved transient performance using visual “trial and
error” methods rather than a mathematical approach. The transient response will be modified by
interactively adjusting the system proportional (P), integral (I), and derivative (D) gains using the
watch window. An active load circuit enabled by software will provide a repetitive step change in
load. The CCS graph window feature will be used to view the transient response in real-time. The
Digital Power software framework, associated files, and library modules will be used. In this lab
you will:

• Tune closed-loop Buck power stage for improved transient performance using visual
“trial and error” approach (as opposed to a mathematical approach)

• Use an active load circuit which, when enable by software, provides a repetive step
change in load

• Use the CCS graph window feature to view and assist you in achieving a desired transient
response

 Project Overview

The software code used in Lab3 is exactly the same code as used in Lab2. All of the files and
build options are identical. The five coefficients to be modified are stored in the arrays
Coef2P2Z and_1 Coef2P2Z_2[n]. Directly manipulating these five coefficients
independently by trial and error is almost impossible, and requires mathematical analysis and/or
assistance from tools such as MATLAB, MathCad, etc. These tools offer Bode plot, root locus
and other features for determining phase margin, gain margin, etc.

To keep loop tuning simple and without the need for complex mathematics or analysis tools, the
coefficient selection problem has been reduced from five degrees of freedom to three, by
conveniently mapping the more intuitive coefficient gains of P, I and D to B0, B1, B2, A1, and
A2. This allows P, I, and D to be adjusted independently and gradually. This method requires a
periodic transient or disturbance to be present, and a means to observe it while interactively
making adjustments. The data-logging feature introduced in Lab2 provides a convenient way to
observe the output transient while the built-in active load (controlled by the ECAP peripheral) on
the EVM can provide the periodic disturbance.

The compensator block (macro) used is ControlLaw_2P2Z. This block has 2 poles and 2
zeros and is based on the general IIR filter structure. The transfer function is given by:

()
()zE
zU

 =
2

2
1

1

2
2

1
10

1 −−

−−

++

++

zaza
zbzbb

 Lab 3: Tuning the Loop

 C2000 System Applications Collateral 25

The recursive form of the PID controller is given by the difference equation:

() () () () ()211 210 −+−++−= kebkebkebkuku

where:

'
'2''

'''

2

1

0

d

dip

dip

Kb
KKKb

KKKb

=
−+−=
++=

And the z-domain transfer funcion form of this is:

()
()zE
zU

 =
1

2
2

1
10

1 −

−−

−

++

z
zbzbb

 =
zz

bzbzb
−

++
2

21
2

0

Comparing this with the general form, we can see that PID is nothing but a special case of a
2pole/2zero controller where:

 11 −=a and 02 =a

In the lab exercise, you will inspect the C code in which these coefficients are initialized.

 Lab Exercise Overview

In Lab2 the software was configured to provide closed-loop voltage control for Ch1 of the buck
EVM and datalogging of the output which is displayed in a CCS graph window. Lab3 will
additionally allow modification of the five coefficients associated with the 2nd order
ControlLaw_2P2Z compensator block. This modification will be done “on the fly” by editing
Pgain, Igain and Dgain in the watch window while the buck output is put under transient
stresses. These stresses are caused by an active load which is switched periodically by the ECAP
peripheral. Note that because the active load is connected to Channel 1, Channel 2 will not be
used in this lab.

The following figure is the system diagram for Lab3.

Lab 3: Tuning the Loop

26 TMS320C2000™ Systems Applications Collateral

VoutR1

Voltage
Controller

CNTL
2P2Z

UoutRef
FB

A
D
C

H
Wrslt0 ADC-B0

ADC
1CH
DRV

Duty[1] EPWM1A

Vin Vout1

BuckDRV

Single Power Stage

Gui_Vset[1]

Watch Window

Gui_SlewStep[1]

Gui_OnDelay[1]

Vref

SSartSEQ

Delay
OutSlope

Target

DataLog

In Mem
Buffer

Graph Window

E
P
W
M

H
WIn

Buck
Single

HR
DRV

Gui_OffDelay[1]

PID
Mapping
(3 5) B2

B1

B0

A2

A1

Coeff.

1 ohm 2 ohm

DRV

ECAP1 Active Load

Pgain

Watch Window

Igain

Dgain

2 ohm

Gui Scaling
(B Tasks)

The default coefficient settings chosen for Lab2 provide very poor performance (low gains).
Initially Lab3 will use the same settings. The control loop will be soft-stared to the target Vout
value, the same way it was done in Lab2. At this point, the active load will be enabled and a load
resistor of equal value to the static load will be switched in and out periodically.

In addition to the watch window variables discussed in Lab3, a few others will be used in the loop
tuning process. These include the P, I and D gains, active load enable, and CCS graph window
(scope control). The table below summarises these new variables.

Pgain Proportional gain; value adjustment : 0 ~ 1000

Igain Integral gain; value adjustment : 0 ~ 1000

Dgain Derivative gain; value adjustment : 0 ~ 1000

ActiveLoad Enable (value=1) / Disable (value=0) flag for the active load circuit

ScopeACmode Sets the CCS Scope (graph window) to operate in AC mode (i.e. removing the
DC component) and is useful for zooming into the transient only

ScopeGain Vertical gain adjustment for the CCS scope (much like a real oscilloscope)

 Lab 3: Tuning the Loop

 C2000 System Applications Collateral 27

 Procedure

Open a CCS Project
1. Code Composer Studio should still be running from the previous lab exercise. If not, then

it will be necessary to setup the project and debug environment from the previous lab
exercises. This can be done by simply loading the last saved workspace. Click:

File Workspace Load Workspace

In the new window browse open:

C:\TI_28xxx_SysSW\TwoChannelBuck\Lab2.wks

Device Initialization, Main, and ISR Files
2. Open TwoChannelBuck-Settings.h. For this lab we will use incremental build

option 2. Please verify that INCR_BUILD is defined as 2
(i.e. #define INCR_BUILD 2).

If the incremental build is not 2, please edit the file then save it by clicking:

File Save

Note: This should be the only change made to source files for
this lab.

3. Open and inspect TwoChannelBuck-Main.c by double clicking on the filename in
the project window. Notice the coefficient initialization and P, I, and D mapping
equation. A section of code is shown here for convenience.

Pgain = 1; Igain = 1; Dgain = 5; // very "loose" initially

// Coefficient init for Single Loop
 Coef2P2Z_1[0] = Dgain * 67108; // B2
 Coef2P2Z_1[1] = (Igain - Pgain - Dgain - Dgain)*67108; // B1
 Coef2P2Z_1[2] = (Pgain + Igain + Dgain)*67108; // B0
 Coef2P2Z_1[3] = 0; // A2 = 0
 Coef2P2Z_1[4] = 67108864; // A1 = 1 in Q26
 Coef2P2Z_1[5] = Dmax[1] * 67108; // Clamp Hi limit (Q26)
 Coef2P2Z_1[6] = 0x00000000; // Clamp Lo

 (Note: 67108 = ~ 0.001 in Q26 format)

4. Close the inspected files if desired.

Build and Load the Project
5. Click the “Rebuild All” button and watch the tools run in the build window. The

output file should automatically load.

Lab 3: Tuning the Loop

28 TMS320C2000™ Systems Applications Collateral

6. Under Debug on the menu bar click “Reset CPU”, “Restart”, and then “Go
Main”. You should now be at the start of Main().

Save the Workspace
7. The watch windows and graph window were setup in the previous lab exercise. A

workspace needs to be saved to include the project for this lab exercise. Save the current
workspace by naming it Lab3.wks and clicking:

File Workspace Save Workspace As…

and saving in C:\TI_F28xxx_SysSW\TwoChannelBuck\.

Run the Code – TwoChannelBuck
8. Enable real-time mode by selecting:

Debug Real-time Mode

9. A message box may appear. If so, select YES to enable debug events. This will set bit 1
(DGBM bit) of status register 1 (ST1) to a “0”. The DGBM is the debug enable mask bit.
When the DGBM bit is set to “0”, memory and register values can be passed to the host
processor for updating the debugger windows.

10. Check to see if the windows are set to continuously refresh. Click:

View Real-time Refresh Options…

and check “Global Continuous Refresh”.

11. Run the code by using the <F5> key, or using the Run button on the vertical toolbar, or
using Debug Run on the menu bar.

12. Turn on the 9-volt DC bus (SW2) on the TwoChannelBuck EVM and observe variable
Gui_Vin in the watch-window. It should now be approximately 9V. Also the Graph
window should show a trace hovering at “0V”.

13. In the watch window turn on Channel 1 output by setting ChannelEnable[1]=1.
Power stage buck 1 module output voltage should ramp quickly to ~1.8V (be sure that
SW3 on the EVM is positioned to select Ch1).

14. Enable the active load circuit by setting variable ActiveLoad = 1 in the watch
window. To better view only the transient or AC component of the output voltage, set the
graph to AC mode by changing variable ScopeACmode = 1. This should put the
output waveform at the graph “zero” line. Optionally, set the scope gain higher by
changing variable ScopeGain = 4. If lab is working correctly, then the graph window
should look something like the following:

 Lab 3: Tuning the Loop

 C2000 System Applications Collateral 29

The negative going transient is when the extra load is switched in and the positive going
overshoot is when the extra load is removed.

15. While observing the transient in real time, gradually adjust Pgain, Igain, and Dgain in the
Watch Window to get the best transient response (i.e. least pertubation from the zero
line). Gradual adjustment is recommended as a large change may cause the system to go
unstable. A suggested procedure is given below:

• Gradually increase Igain until the negative going transient flattens out near the
zero line

• Increase Pgain until some oscillation (2~3 cycles) occurs
• Increase Dgain to remove some of the oscillation
• Increase Igain again
• keep iterating very gradually until an acceptable transient response is achieved –

this may look something like the graph shown below:

16. Reduce the scope vertical gain back to 1 (ScopeGain = 1) and set the graph back in
DC mode (ScopeACmode = 0). The voltage output response should look something
like this now:

Lab 3: Tuning the Loop

30 TMS320C2000™ Systems Applications Collateral

17. With the active load still enabled, try shutting down Channel 1 output and then bringing it
back up under “soft” shut-down and start-up conditions. The closed loop should be stable
during the ramping even during the switching transients.

18. Turn off the 9-volt DC bus (SW2) on the 2-channel buck EVM. (Do not turn off the
main power SW1).

19. Fully halt the DSP in real-time mode. First, halt the processor by using Shift <F5>, or
using the Halt button on the vertical toolbar, or by using Debug Halt. Then click
Debug Real-time Mode and uncheck the “Real-time mode” to take the
DSP out of real-time mode.

20. Close Code Composer Studio and turn off the power (SW1) to the 2-channel buck EVM.

End of Exercise

 References

 C2000 System Applications Collateral 31

References
• QSG-TwoChannelBuck – provides all the information on software and hardware setup

necessary to quickly get started with the TwoChannelBuck project.

C:\TI_28xxx_SysSW\TwoChannelBuck\~Docs\QSG-TwoChannelBuck.pdf

• System Framework Overview – presents more information on the system framework found
in all F28xxx EVM projects.

C:\TI_28xxx_SysSW\~Docs\SystemFrameworkOverview.pdf

• QSG-TwoChannelBuck-GUI – gives an overview on how to quickly demo the
TwoChannelProject using an intuitive GUI interface.

C:\TI_28xxx_SysSW\TwoChannelBuck\~Docs\QSG-TwoChannelBuck-GUI.pdf

• TwoChannelBuck-Calculations – a spreadsheet showing a few of the key calculations
made within the TwoChannelBuck project.

C:\TI_28xxx_SysSW\TwoChannelBuck\TwoChannelBuck-Calculations.xls

• TwoChBuck-HWdevPkg – a folder that contains various files related to the hardware on the
EVM board (schematics, bill of materials, gerber files, pcb layout, etc). All schematics and
pcb files created with the freeware ExpressPCB package.

C:\TI_28xxx_SysHW\TwoChBuck-HWdevPkg

• F28xxx User’s Guides -

http://www.ti.com/f28xuserguides

