

Understanding and Optimizing Electromagnetic Compatibility in Switchmode Power Supplies

Definitions

EMI = Electro Magnetic Interference **EMC** = Electro Magnetic Compatibility (No EMI)

Three Components of EMI:

- Noise generator (source)
- Noise transmission (coupling)
- Noise receptor (victim)

Understanding EMI

• Electromagnetic Fields Caused by Changing Currents and Voltages

• Maxwell's Equations:
$$e = M \frac{di}{dt}$$
, $i = C \frac{dv}{dt}$

- Slower Rise/Fall Times (with tradeoffs)
- Low Energy Phenomenon
 At 1 Mhz, 20 nW can fail FCC limits

Categorizing EMI

EMI Specifications

USA - FCC: CFR Title 47, Part 15 (etc.) Europe - IEC: EN50081 (and others) French - CISPR: Publication 22

Frequency Ranges (FCC) -

Conducted EMI: Radiated EMI: 450 kHz to 30 MHz 30 MHz to 1 GHz

Note: Measurement dependencies on operating conditions

Conducted Noise Limits (FCC vs CISPR)

Radiated Noise Limits (FCC vs CISPR)

Measuring Conducted Noise

Line Impedance Stabilization Network (LISN)

* Capacitor value determined by lowest specified frequency

Elements of Conducted Noise

Sources of Differential Mode Noise

Switching action causes current pulses at input and output.

Sources of Common Mode Noise

Combating Differential Mode Noise

Basic Ideal Filter

Actual Filter with Parasitics

Four Paralleled Capacitors Reduces ESL

Improved Inductor Reduces Shunt C

Adding a Second Stage Inductor

Reducing Inductor Parasitic Shunt Capacitance

Filter Resonance

Natural Resonant Frequency =

$$\frac{1}{2\pi\sqrt{LC}}$$

Three Potential Problems:

- 1. Step application of input voltage could ring to $2V_{\rm P}$.
- 2. High frequency noise at input could be amplified by "Q" of filter.
- 3. Filter output impedance rises at fr with potential oscillation with Z_{IN} of converter.

Filter Damping

Combating Common Mode Noise

Common Mode Noise Analysis

3rd harmonic equivalent noise voltage circuit

- $V_{\rm N} = 68 \, {\rm mV}$
- FCC Limit (class A) = 1.0 mV
- Required noise filter attenuation: 37 db at 600 kHz

Achieving 37 dB Attenuation With Series Inductor

Allowable parasitic capacitance is unrealistic.

Achieving 37 dB Attenuation With Shunt Capacitor

Required capacitor will not meet safety specifications.

Optimum Solution Uses Both L and C

Complete Input Filter for Both DM and CM Conducted Noise

Minimizing CM Noise Injection

Electrostatic Shielding

- Also called a Faraday shield
- Connect to V+ if turn-off is fastest, to return with faster turn-on

Radiated EMI

- Noise is easily transformed back and forth between conducted and radiated form
- Conductors become antennas and antennas become receivers
- Testing more difficult
 - Frequency > 30 MHz
 - Test environment and fixturing is critical

Radiated Noise Measurements

Characteristics of Radiated Noise

- Electric Field: $E = C\left(\frac{dv}{dt}\right)$
 - Minimize high dv/dt on large surfaces
- Magnetic Field: $H = M\left(\frac{di}{dt}\right)$
 - Minimize high di/dt in conductive loops
- Near Field: $<\frac{\lambda}{2\pi}$
 - Electric and magnetic fields act independently
- Far Field: $>\frac{\lambda}{2\pi}$ - Electric and magnetic fields merge
- At 1 MHz, $\lambda = 300$ meters

Potential Electric Field EMI Sources

• Shielding possible

Magnetic Fields from Transformers and Inductors

Potential Magnetic Field EMI Sources

Magnetic Fields from Leakage Inductance

Leakage fields radiate with intensity of $\frac{1}{d^3}$

Opposing fields tend to cancel with intensity of $\frac{1}{d^4}$

Minimizing Stray Magnetic Fields in Transformers

- Continuous copper strap around both windings and core.
- Converts stray magnetic fields to eddy current.
- Eddy current creates a canceling magnetic field.

Minimizing Stray Magnetic Fields in Inductors

Poor Construction Techniques

Summary

- Presented a general overview
- Defined various categories of noise
- Described measurement techniques
- Discussed ways to minimize noise generation
- Did not cover shielding or techniques to minimize susceptibility
- Should mention frequency modulation
- Valuable additional references listed