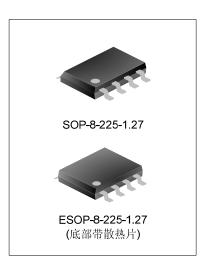


$6\sim60V$ 输入, 1A 大功率LED驱动芯片

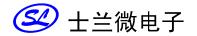

描述

SD42527是降压型、PWM控制、功率开关内置的LED驱动芯片。在6~60V输入电压范围内,输出电流能达到1A。内置温度保护电路,限流电路,PWM调光电路。

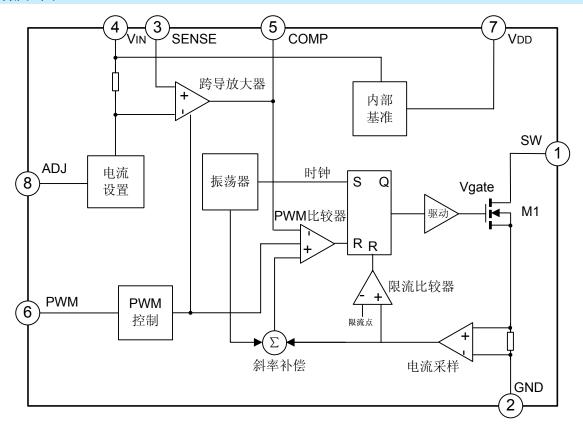
SD42527采用电流模式控制,环路结构简单稳定,具有快速的瞬态响应,恒流特性好。芯片效率高,可达96%以上,在输入/输出电压变化时,输出电流变化控制在±1.5%之内。

主要特点

- *6~60V的输入电压范围
- * 最大 1A 的输出电流
- * 0.60Ω的内置功率 MOSFET
- * 抖频功能
- * 热补偿功能
- * PWM 调光功能
- * 300kHz 的固定开关频率
- * 芯片之间的输出电流精度 ±3%
- * 串接多个 LED 时,效率可以达到 96%以上。
- * 过温保护
- *每周期的过流保护
- * 限流保护
- * 开路检测保护
- * ADJ 过低检测
- *输出短路保护
- *90%的最大占空比



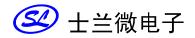
应用


- * LED 建筑物照明
- * LED 路灯

产品规格分类

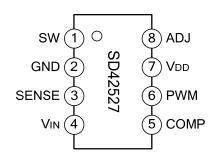
产品名称	封装形式	打印名称	材料	包装	
SD42527	SOP-8-225-1.27	SD42527	无铅	料管	
SD42527TR	SOP-8-225-1.27	SD42527	无铅	编带	
SD42527E	ESOP-8-225-1.27	SD42527E	无铅	料管	
SD42527ETR	ESOP-8-225-1.27	SD42527E	无铅	编带	

内部框图

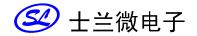


极限参数

参数	符 号	参 数 范 围	单位
电源电压	V_{IN}	60	V
开关电压	V_{SW}	80	V
PWM 端电压	V_{PWM}	-0.3~6	V
补偿端电压 V _{COM}		-0.3~6	V
ADJ端电压	V_{ADJ}	-0.3~6	V
VDD 端电压 V _D		-0.3~6	V
SENSE 端电压 V _{SE}		-0.3~V _{IN}	V
结温 T _i		150	°C
引脚温度	T_L	260	°C
工作温度范围 T _{OPR}		-20~85	°C
贮存温度范围 T _{STG}		-40~125	ç


电气参数(除非特别说明,V_{IN}=12V,I_{OUT}=700mA,T_{amb}=25°C)

参数	符号	测试条件	最小值	典型值	最大值	单位
电源电压	V _{IN}		6		60	٧
工作电流	I _{IN}	V _{CC} =6/60V,V _{PWM} =5V, 空载		1.4	2.0	mA


参数	符号	测试条件	最小值	典型值	最大值	单位
功率管漏电流	IL	V _{SW} =80V		0	5	μА
电流限制	I _{LIM}	V _{IN} =V _{SENSE} =12V	1.4	1.6	1.8	Α
最大占空比	D _{max}		85	90		%
振荡频率	f _{osc}		270	300	330	kHz
PWM 调光脚开启电压	V_{PWMON}	V _{PWM} 由 0∼5V开启电压	2.2	2.4	2.6	V
PWM 调光脚关断电压	V _{PWMOFF}	V _{PWM} 由 5∼0V关断电压	1.9	2	2.1	V
PWM 脚上拉电流	I _{PWM1}	V _{PWM} =0V		0		μΑ
PWM 脚下拉电流	I _{PWM2}	V _{PWM} =5V	20	30	40	μΑ
COMP 端箝位电压	V _{COMP}	空载		0		V
开关管导通电阻	Ron	1LED, I _{OUT} =0.5A		0.6	0.8	Ω
VDD 电压	V_{DD}	空载	5.3	5.5	5.7	V
ADJ 阈值电压	V _{ADJ}	V _{ADJ} 由 5~0V, 输出电流减小时的电压	1.20	1.22	1.25	V
ADJ 过低关闭阀值	V _{ADJOFF}	V _{ADJ} 由 1∼0V关闭电压		80		mV
ADJ 过低恢复阀值	V _{ADJON}	V _{ADJ} 由 0∼1V开启电压		90		mV
采样电压阈值	V _{IN} -V _{SENSE}	Vin与SENSE压差		100		mV
过温保护阀值	T _{OVP}	上升温度		150		°C
过温恢复阀值	T _{RECOVERY}	下降温度		130		°C

管脚排列图

管脚描述

管脚号	管脚名称	I/O	管 脚 功 能
1	SW	ı	功率输出端。
2	GND	0	地
3	SENSE	ı	电流采样端
4	V_{IN}	0	电源输入端
5	COMP	I/O	补偿端,外接补偿元件。
6	PWM	ı	PWM 调光端,外接 PWM 信号改变输出电流的大小。
7	V_{DD}	ı	5V 基准输出端。
8	ADJ	I	热补偿脚/线性调光脚

功能描述

SD42527 是电流模式的 LED 驱动电路。补偿管脚 COMP 的电压正比于输出的负载电流。

在一个工作周期的开始时,开关管M1 截止, COMP管脚电压高于电流采样放大器的输出,此时PWM比较器的输出为"低"。300kHz时钟的上升沿对RS触发器置位,触发器的输出将M1 导通, V_{IN} , R_{S} ,LED,电感和M1 组成通路,电感上的电流增加。电感中的电流经过电流采样放大器的采样、放大,输出叠加斜率补偿信号后与跨导放大器的输出电压由PWM比较器进行比较。当前者大于后者时,RS触发器复位,开关管M1 截止,电感上的能量通过 R_{S} ,LED,电感,肖特基管组成的回路释放,电流减小。在下一个时钟到来时,开关管M1 开通,进入下一个开关周期。在一个振荡周期内,如果采样叠加斜率补偿后的信号一直没有大于跨导放大器的输出电压,时钟的下降沿将对RS触发器复位。

跨导放大器将输出电流与电流阈值相比较(电流阈值由内部设定)。当输出电流高于阈值电流时,COMP管脚的电压变低,COMP管脚的电压正比于电感电流的峰值,所以输出电流减小;当输出电流低于阈值电压时,COMP管脚电压升高,输出电流增大。这样,通过环路的调节作用,输出电流稳定在设定的电流值。

1. **PWM** 调光功能

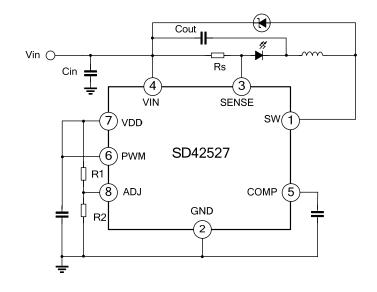
SD42527 内部设定 PWM 调光功能。当 PWM 管脚接高电平时,芯片正常工作,当 PWM 管脚悬空或者接低电平时,COMP 脚与芯片断开,电容上的电荷处于保持状态,电平保持,PWM 比较器的输出拉高,开关管关断,没有输出电流。这样在 PWM 信号变高电平的时候,COMP 脚与芯片内部接通,提高了芯片的启动速度。通过控制外部 PWM 信号的占空比可以调节输出电流的大小。

SD42527 PWM 调光时芯片内部最小的建立时间小于 20μS, PWM 最高调光比可以达到 500: 1。当需要高的调光比时,调光频率推荐 500Hz 以下,调光比要求不高时,调光频率可以达到 2kHz。

2. 输出电流设定

输出电流大小由采样电阻和设定的电压值决定。芯片的采样电压值 V_{IN} - V_{SENSE} (R_{S} 两端的压降)为 100mV。通过调节采样电阻 R_{S} (见典型应用电路图)的大小调节输出电流。

$$I_{OUT} = \frac{V_{IN} - V_{SENSE}}{R_S}$$


3. 限流功能

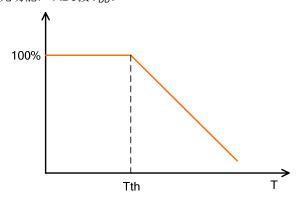
SD42527 为电流模式工作原理,自动具有逐周期限流功能,内部 COMP 端的电压最高不超过 2.2V。此外 SD42527 单独配置限流比较器,使功率 MOS 管上的峰值电流不超过 1.6A。

4. 抖频功能

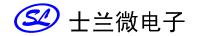
SD42527 内置抖频功能,可以改善系统的 EMI 特性。内部振荡频率在一个很小的范围内进行抖动,减小在单一频率的对外辐射,从而使得 EMI 设计简单化。

5. 热补偿功能及线性调光功能

SD42527集成线性调光功能和热补偿功能。


线性调光功能:通过设定R1 和R2 的比例,设定输出电流的大小。ADJ管脚电压与输出电流I_{OUT}的关系为:

$$\begin{split} V_{A_{DJ}} &\geq 1.22 V \; , \quad I_{OUT} = \frac{0.1}{R_s} \\ 0.08 V &< V_{A_{DJ}} < 1.22 V \; , \quad I_{OUT} = \frac{0.1}{R_s} \times \frac{V_{A_{DJ}}}{1.22} \\ V_{A_{DJ}} &< 0.08 V \; , \quad I_{OUT} = 0 \end{split}$$


芯片内部自动检测ADJ电压,当其低于 0.08V时,I_{OUT}=0,这消除了线形调光中通常存在的LED不能完全熄灭的问题。

热补偿功能:如图所示的应用电路中,将R2换做NTC电阻,可以用于热补偿功能,正常温度下R2上的分压高于1.22V,输出电流为100%电流值,当R2检测到LED上的温度高于设定值Tth时,R2上的分压低于1.22V,输出电流会随温度升高降低。通过NTCR2电阻与其他电阻串并联,可以实现LED电流不同的下降曲线。

如不用热补偿及线性调光功能, ADJ接V_{DD}。

LED 输出电流随温度的关系

6. 过热保护功能

SD42527 有过热保护功能,当芯片温度超过 150°C 时,过热保护工作,COMP 脚被拉低,同时功率管被关闭。当芯片温度回落到 130°C 以下后,过热保护解除。

7. 开路检测保护功能

SD42527 内部会检测负载开路状态,并将外部 COMP 脚电压拉到 0V。该功能确保接通负载时,COMP 脚电压和电感电流从零开始缓慢上升,从而减小电流过冲,增加工作安全性。

8. 输出短路保护功能

输出短路后, SD42527 会自动调节 COMP 脚电压,降低开关频率,限制峰值电流,保护芯片不受损伤。

9. 最大占空比工作

当占空比大于最大占空比后,芯片将会降频工作,这段时间内,开关频率会随输入电压下降而变低,但 输出电流保持不变。直到输入电压接近输出电压后,输出电流开始下降,内部开关一直导通。

元器件选择

1. 输入电容选择

输入电容在功率管导通的时候提供脉冲电流,功率管截止的时候电源对电容充电,由此来保持输入电压的稳定性。输入电容建议使用大于 47μF 的电容,这样可以更好的减小从输入源抽出的峰值电流并且减小输入开关噪声。布板时输入电容尽可能离输入脚近一些。

2. 输出电容选择

在 LED 两端并联一个电容可以减小输出电压纹波,从而减小 LED 的纹波电流,当然这个电容并不会影响工作频率和效率,但是通过减小 LED 上电压上升的速率,会增加启动时间。输出电容越大,LED 上的电流纹波越小。SD42527 应用中建议使用 2.2 μF 或者更大的电容。

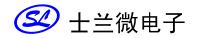
3. 电感选择

电感用于维持输出电流的恒定,电感值越大,输出电流纹波越小,但是物理尺寸越大,串联电阻越大。 选取的电感电流的有效电流(RMS current rating)需要大于最大输出电流,饱和电流要比最大输出电流高 30%,为了提高效率,电感的串联电阻(DCR)要小,应该小于 0.2Ω。

电感值与纹波的关系:

$$L = V_{OUT} * \frac{V_{IN} - V_{OUT}}{V_{IN} * f * \Delta I}$$

其中: L: 电感大小


f: 振荡频率

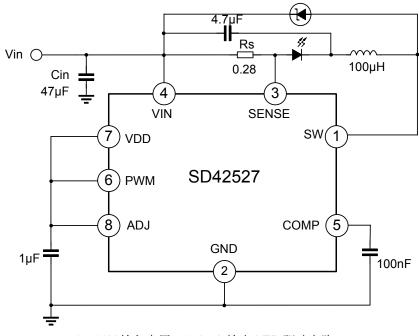
ΔI 为纹波电流

选取电感时,考虑几种因素的集合,选取合适的电感。

4. 二极管选择

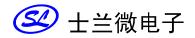
SD42527 是非同步的降压型调节器,所以需要二极管在功率管截止的状态下提供续流。由于肖特基二极

管正向导通压降小,反向续流时间短,所以一般用于续流。在功率管导通过程中,二极管要承受高压,所以 选择的二极管反向耐压必须大于输入电压。

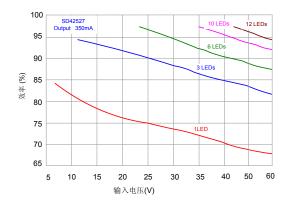

流过二极管的平均电流I_D为:

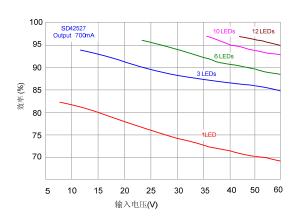
$$I_D = (1-D)^* I_{LED}$$

I_{LED}为LED上的电流

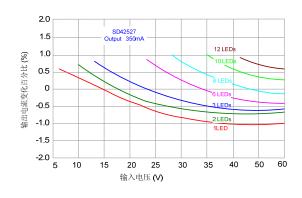

当输入电压较大时,占空比较小,In变大,所以选取的续流二极管的最大电流要比输出电流要大。

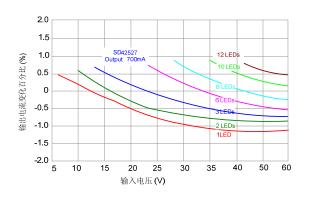
典型应用电路图

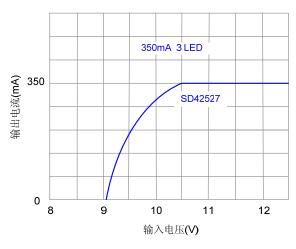



6~60V 输入电压, 350mA 输出 LED 驱动电路

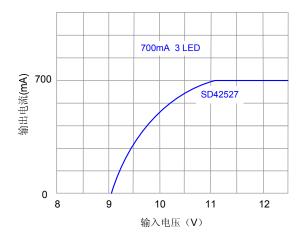
注:以上线路及参数仅供参考,实际的应用电路请在充分的实测基础上设定参数。


电气特性曲线

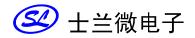



输出 350mA 效率随输入电压变化曲线

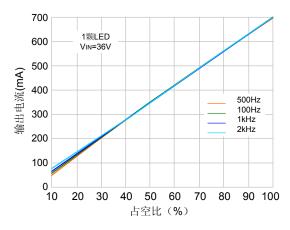
输出 700mA 效率随输入电压变化曲线

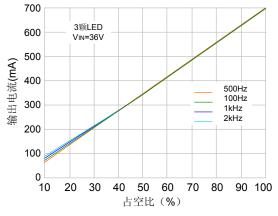


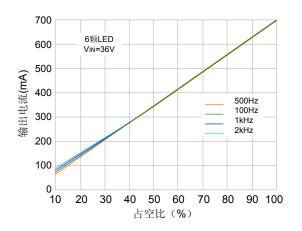
输出 350mA 电流随输入电压变化率



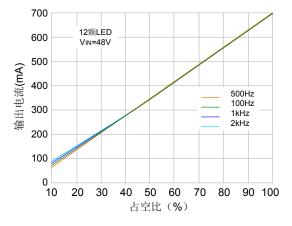
输入电压与输出电压接近时的输出电流变化曲 线(350mA)


输出 700mA 电流随输入电压变化率

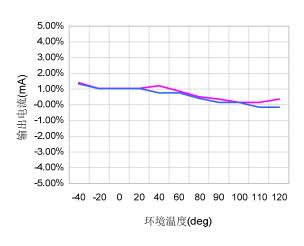

输入电压与输出电压接近时的输出电流变化曲线 (700mA)

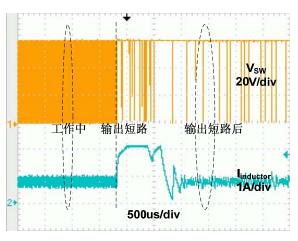


电气特性曲线 (续)

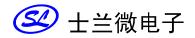


1 颗 LED PWM 调光特性(700mA) 3 颗 LED 串接 PWM 调光特性(700r

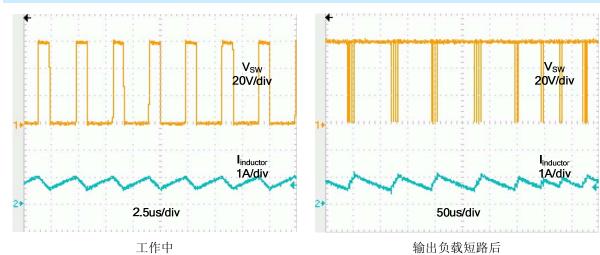



3 颗 LED 串接 PWM 调光特性(700mA)

6 颗 LED 串接 PWM 调光特性(700mA)

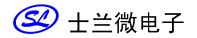


12 颗 LED 串接 PWM 调光特性 (700mA)

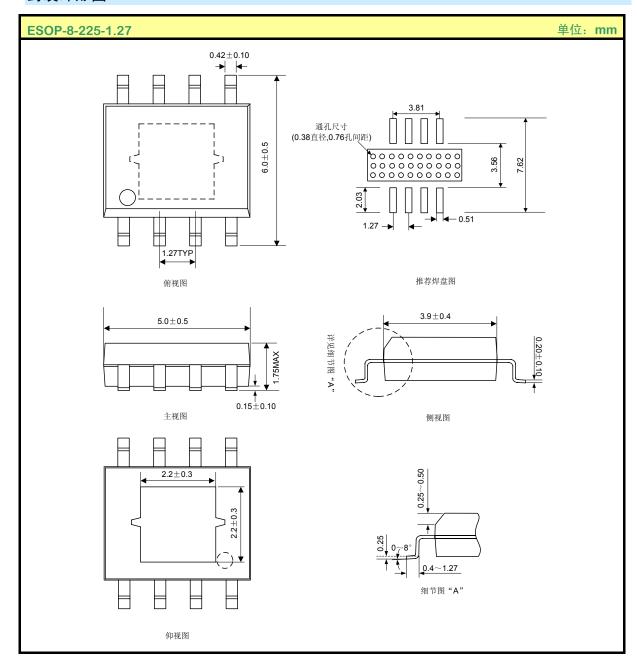


输出电流和环境温度的关系 (Vin=48V,12LED,L=100uH,Cout=2.2uF)

工作 -> 输出负载短路 (Vin=60V, 12LED, lout=700mA, L=100uH)

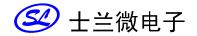


电气特性曲线 (续)

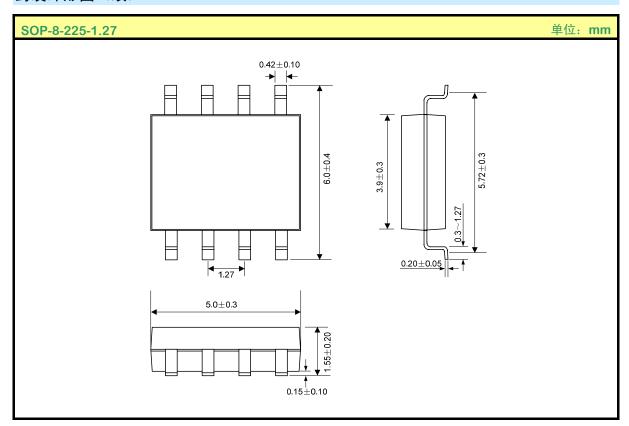


(Vin=60V, 12LED, lout=700mA, L=100uH)

(Vin=60V, 12LED, lout=700mA, L=100uH)



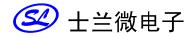
封装外形图



注意:

ESOP8的封装带有外露的散热PAD,使用时请将PCB表面散热的铜箔与IC背面散热PAD焊接在一起,并且尽可能增大PCB铜箔的面积,以利于散热;布线时,请在散热PAD下面放置足够多的通孔,提高散热性能。

封装外形图 (续)


MOS电路操作注意事项:

静电在很多地方都会产生,采取下面的预防措施,可以有效防止MOS电路由于受静电放电影响而引起的损坏:

- 操作人员要通过防静电腕带接地。
- 设备外壳必须接地。
- 装配过程中使用的工具必须接地。
- 必须采用导体包装或抗静电材料包装或运输。

声明:

- 士兰保留说明书的更改权,恕不另行通知!客户在下单前应获取最新版本资料,并验证相关信息是否 完整和最新。
- 任何半导体产品特定条件下都有一定的失效或发生故障的可能,买方有责任在使用 Silan 产品进行系统设计和整机制造时遵守安全标准并采取安全措施,以避免潜在失败风险可能造成人身伤害或财产损失情况的发生!
- 产品提升永无止境,我公司将竭诚为客户提供更优秀的产品!

附:

修改记录:

日期	版本号	描述	页码
2011.06.15	1.0	原版	
2011.08.02	1.1	修改"主要特点"	