

YT2603 高性能电流模式 PWM 开关电源控制器

特点

- 内置 700V 高压功率开关管, 极少的外围器件
- 锁存脉宽调制,逐脉冲限流检测
- 低输出降频功能,无输出功耗可低于 0.25W
- 内建斜坡与反馈补偿功能
- 独立上限电流检测控制器,实时处理控制器的过流、过载
- 关断周期发射极反偏压,提高了功率管的耐压
- 内置具有温度补偿的电流限制电阻,精确电流限制
- 内置热保护电路
- 利用开关功率管的放大作用完成启动,启动电阻的功耗减少10倍以上
- 极少的外围元器件
- 低启动和工作电流
- 过压自动限制
- 宽电压输出功率可达 5W, 窄电压输出功率可达 8W

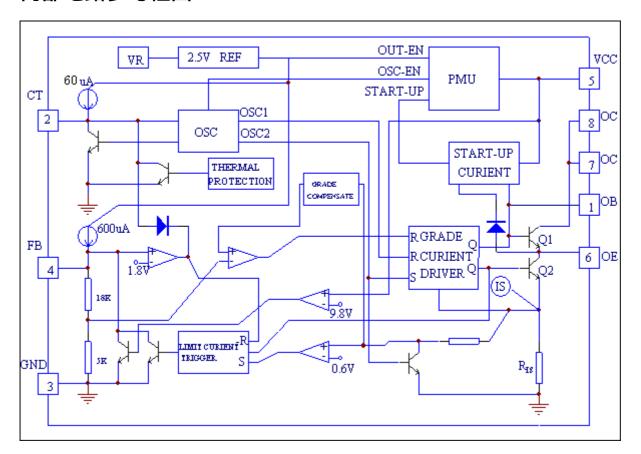
概述

高性能电流模式 PWM 控制器。专为高性价比 AC/DC 转换器设计。在 85V-256V 的宽电压范围内提供高达 5W 的连续输出功率。该电源控制器可工作于典型的反激电路拓扑中,构成简洁的 AC/DC 转换器。IC 内部的启动电路被设计成一种独特的电流吸入方式,可利用功率开关管本身的放大作用完成启动,这显著地降低了启动电阻的功率消耗;而在输出功率较小时 IC 将自动降低工作频率,从而实现了极低的待机功耗。在功率管截止时,内部电路将功率管反向偏置,直接利用了双极型晶体管的 CB 高耐压特性,大幅提高功率管的耐电压能力直到 700V 的高压,这保证了功率管的安全。IC 内部还提供了完善的防过载防饱和功能,可实时防范过载、变压器饱和、输出短路等异常状况,提高了电源的可靠性。IC 内部还集成了一个 2.5V 的电压基准,为时钟电路提供精确的供电电压,而时钟频率则可由外部定时电容进行设定。

现可提供 DIP8 的标准封装和满足欧洲标准的环保无铅封装。

应用领域

- 电源适配器 ADAPTOR, 性能上可完全取代 ST 的 VIPER12A, Fairchild 的 FSD200/210 等;适用于 手机充电器 MP3、MP4 充电器 DVD 电源,小家电控制器电源.等小于 6W 的开关电源产品。
- 绿色节能型家电内部电源(如电磁炉、微波炉等)


无锡颐鼎科技有限公司

管脚图

内部电路参考框图

无锡颐鼎科技有限公司

引脚功能描述

管脚	符号	管脚定义描述
1	OB	功率管基极 , 启动电流输入 , 外接启动电阻
2	СТ	振荡电容脚,外接定时电容
3	GND	接地脚
4	FB	反馈脚
5	VCC	供电脚
6	NC	OE 脚,应用中悬空 *
7,8	OC OC	输出脚,接开关变压器

^{*:} PCB Layout 时应将 Pin6 悬空处理,并与 Pin7 之间保留足够的安全距离,避免产生放电现象。

极限参数:

供电电压 VCC		16V
启动输入电压		. 16V
引脚输入电压		VCC+0.3V
00 集电极承受电	压	-0.3-700V
峰值开关电流		. 300mA
总耗散功率		. 1000mW
工作温度范围		0 - +125
储存温度范围		55 - +150
焊接温度	+	126 , 10S

推荐工作条件

项目	最小	典型	最大	单位
供电电压 VCC	4.8	5.5	9	V
引脚输入电压	-0.3	-	Vcc	V
峰值反向电压	-	-	500	V
峰值开关电流	-	-	250	mA
定时电容	270	330	680	PF
振荡频率	43	76	90	KHz
工作温度	0		70	

^{*}CT主要限在红外接收以外。

无锡颐鼎科技有限公司

电气参数 (Ta=25 , Vcc=5.5-7.5V, Ct=330PF)

输出部分

项目	测试条件	最小	典型	最大	单位
开关管最大耐压	Ioc=10mA	700	ı	ı	V
开通饱和压降	Ioc=250mA	_	1	1	V
输出上升时间	CL=1nF	_	1	75	ns
输出下降时间	CL=1nF	-	-	75	ns
输出限制电流	-	250	270	290	mA
OE 嵌位电压	0E=0.001-0.29A	-	1.5	-	V

参考部分

项目	测试条件	最小	典型	最大	单位
参考输出电压	I o=1. OmA	2.4	2.5	2.6	V
电源调整率	Vcc=5. 5-9V	_	2	20	mV
负载调整率	负载调整率 I o=0.1-1.2mA		_	3	%
温度稳定性		-	0.2	ı	mV/
输出噪声电压	F=10Hz-10KHz	_	_	50	μV
长期稳定性	T=85 条件下工作 1000 h	-	5	-	mV

振荡器部分

项目	测试条件	最小	典型	最大	单位
震荡频率	Ct=330PF		76		KHz
频率随电压变化率	Vcc=5.5-9V	-	-	1	%
频率随温度变化率	Ta=0-85	-	-	1	%
振荡器振幅(Vp-p)		-	2.2	-	V
振荡器下降沿	Ct=330PF	-	1200	-	ns

反馈部分

项目		测试条件	最小	典型	最大	单位
输入阻抗	上拉电流		-	0.5	0.6	mA
	下拉电阻		-	30	-	K
电源抑制比		Vcc=5. 5-9V	ı	60	70	dB

电流取样部分

项目	测试条件	最小	典型	最大	单位
电流取样门限		0.55	0.6	0.65	V
防上限电流		0. 25	0. 27	0. 29	Α
电源抑制比		-	60	70	dB
传输延时		-	150	250	ns

无锡颐鼎科技有限公司

(续上)

脉宽调制部分

项目	测试条件	最小	典型	最大	单位
最大占空比		53	57	61	%
最小占空比		-	-	3.5	%

电源电流部分

项目	测试条件	最小	典型	最大	单位
启动接受电流		1.6	2.4	3. 2	mA
启动静态电流		_	55	80	μА
静态电流	Vcc=8V	_	2.8	-	mA
启动电压		8.2	8. 9	9.2	V
振荡器关闭电压		5.6	5.8	6.1	V
再启动电压		-	3.6	-	V
过压限制门限		9. 2	9.7	10.3	٧

原理描述

- 启动阶段,上电时 VR 关闭; FB 上拉电流源关闭; OE 由功率管输入启动电流到 VCC; OB 控制功率管的基极电流,限制功率管集电极电流(即 YT2603 启动接受电流),从而保证功率管的安全;在 VCC 电压上升到 8.8V,启动阶段结束,进入正常阶段。
- 正常阶段,VCC 电压应保持在 4.8V-9.0V,VR 输出 2.5V 基准;FB 上拉电流源开启;振荡器输出 0SC1 决定最大占空比,输出 0SC2 试图触发电源进入开周期、及屏蔽功率管开启电流峰;若FB 小于 1.8V(约在 1.2-1.8V 之间)振荡周期将随之增加,FB 越小振荡周期越宽、直至振荡器停振(此特性降低了开关电源的待机功耗);开周期,0B 为功率管提供基极电流,0E 下拉功率管的发射极到 IS,而且 0B 采用斜坡电流驱动(指 0B 开电流是 IS 的函数,当 IS=0V 是 0B 开电流约 24mA,然后 0B 开电流随 IS 线性增加,当 IS 增加到 0.6V 时 0B 开电流约 40mA,此特性有效地利用了 0B 的输出电流,降低了 YT2603 的功耗),若 IS 检测到 FB 指定电流则进入关周期;关周期,0B 下拉,功率管不会立即关断,但 0E 箝位 1.5V(功率管关断后基极反向偏置,提高了耐压);在开或关周期,如检测到功率管超上限电流,则上限电流触发器优先置位,强制 FB下降,占空比变小,从而保护功率管和变压器;在下一个关周期开始沿或 FB 小于 1.8V,上限电流触发器复位。另外,YT2603内置热保护,在内温度高于 125 后调宽振荡器的周期,使 YT2603温度不超过 135 ;内置斜坡补偿,在 YT2603 大占空比或连续电流模式时能稳定开/关周期。
- 若 VCC 降到 4.2V 左右,振荡器关闭, OSC1、OSC2 低电平,电源保持关周期; VCC 继续下降到 3.6V 左右,IC 重新进入启动阶段。

电参数定义

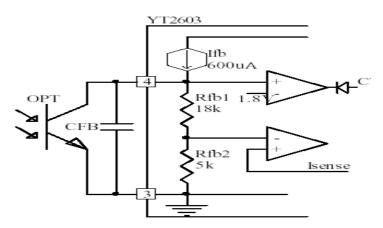
- 启动接受电流:启动阶段 OB 输入 0.5mA 时 OC 点电流。
- 启动静态电流:VCC 接滤波电容和可调电流源,CT 接 330PF,其他引脚悬空,能使 VCC 振荡时(即能完成 YT2603 启动的)最小电流源电流。
- 启动电压:上述 VCC 振荡的最大 VCC 值。

无锡颐鼎科技有限公司

- 再启动电压:上述 VCC 振荡的最小 VCC 值。
- 振荡器关闭电压:上述 VCC 振荡下降沿,使振荡器停振的 VCC 值。
- 静态电流:正常阶段, FB 由 1.0K 电阻接地, VCC 电源电流。
- 振荡上拉/下拉电流:正常阶段, FB=2.5V, CT=1.25V, CT 处上拉/下拉电流。
- FB 上拉电流:正常阶段, FB=2.5V, IS=0V 时, FB 处上拉电流。
- FB 防上限电流:正常电流, FB=6V, IS=0.3V, FB 处下拉电流。
- 内反馈电源电压:无外围待机反馈电路的 YT2603 电源,正常阶段时 VCC 值。
- OC 上限电流:FB=6V, FB 下拉电流开始动作时的最小 OC 电流。
- 斜坡电流驱动:指功率管基极驱动 OB 开电流是 IS 的函数,当 IS=0V 时 OB 开电流约 24mA,然后 OB 开电流随 IS 线性增加,当 IS 增加到 0.6V 时 OE 开电流约 40mA。

应用信息:

1. CT 定时电容与开关频率的关系

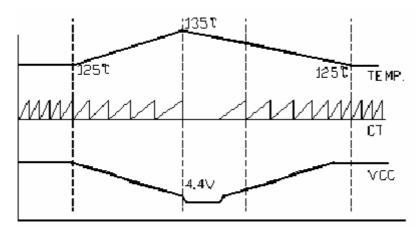

对于双极功率开关而言,需考虑存储时间对开关损耗的影响。在一般的应用场合可将 YT2603 的 CT 电容按 330PF 配置,此时对应的工作频率约为 76KHz。时钟周期约为:

$$T=CT^* 40000$$
 (s)

$$Fs=1/T$$
 (Hz)

2. FB 反馈与控制

在正常工作状态,FB的电压将决定最大开关电流的值,此电压越高开关电流越大(仅受限于峰值电流限制)。FB引脚内部上拉600 μA电流源,下拉电阻约23 K(近似等效值)。此外在FB电压低于1.8V时,将使振荡周期加大,开关频率下降,低于1.8V越多,开关频率将越低。外接FB电容将对反馈带宽产生影响,进而影响某些外部参数,比如瞬态特性


对于 CFB 电容的值,典型的应用可在 10-100nF 之间根据反馈回路的频率特性进行选取,推荐使用 22nF。

无锡颐鼎科技有限公司

3. 过温度保护

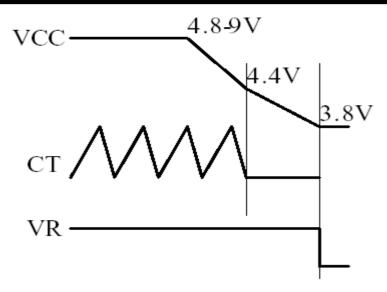
IC 内部集成了精确的过温度保护功能。在芯片内部温度达到 125 时,热保护电路动作,将时钟信号下拉,使开关频率降低,降低功耗。开关频率随温度的升高而降低,直至振荡器关闭。如下图所示:

4. 功率管驱动特性与高耐压偏置技术

功率管采用斜坡电流驱动,驱动电流随输出功率增加而增加,在 FB=0 时,0B 电流约为 24mA,在 FB=6V 时,0B 电流约为 40mA,小输出时驱动功耗得到显著的降低。

IC 内部集成了独特的偏置技术,在功率管关断时,0B 输出极力下拉到地,同时偏置 0E 输出约到 1.5V,反向偏置发射结,加速 Ic 电流的下降速度,扩展了有效的安全各种区,开关管承受反向的 CB 电压,使得开关管达到 700V 的电压承受能力。

偏置波形如下图所示:



5. 过压与欠压保护

IC 具有带迟滞的欠电压保护功能。在 VCC 电压达到 8.8V 时 IC 开始启动,这个初始的启动电压有驱动电阻提供,输入的高电压通过驱动电阻注入开关管的基极,放大的 Ic 电流在 IC 内部经过限制电路对 VCC 电容充电,从而形成驱动电压。在 IC 正常工作时应保持 VCC 电压在 4.8-9V 之间(包括满负载输出情况),若 VCC 电压下降到 4.2V 则振荡器将进入关闭状态,VCC 进一步降低到 3.6V 时,IC 即开始重新启动。如下图所示:

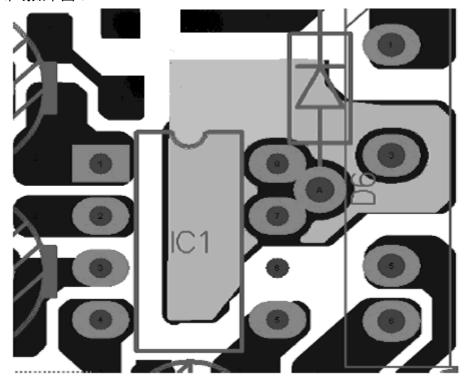
无锡颐鼎科技有限公司

IC 内部 VCC 具有一个上限电压比较器控制,若 VCC 试图大于 10V,则比较器动作,FB 将被下拉,锁定 VCC 至 10V,达到过电压的限制功能。利用此功能可以方便地实现前端的电压反馈功能,也可以避免输出开环时的输出电压大幅度升高现象,保障负载的安全。因为此特性的存在,VCC 的设计应保持在合适的范围,避免在大输出负载时 VCC 的上升过高,IC 过压限制动作导致的输出电压下降现象。

6. 最大开关电流限制

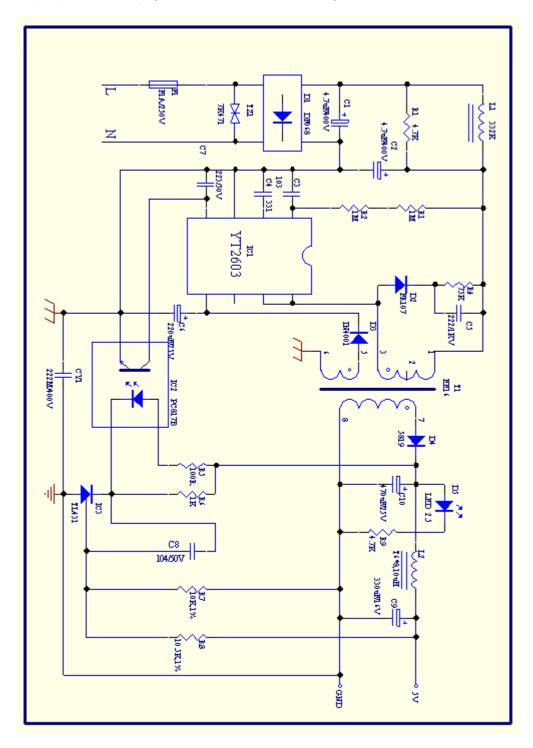
IC 具有逐周期电流限制功能。每个开关周期均对开关电流进行检测,达到 FB 设定的电流或防上限电流时即进入关周期,电流的检测具有实时前沿消隐功能,屏蔽开关尖峰,避免开关电流的错误检测。合理的温度补偿则消除了温度的影响,相对常规的 MOSFET(温度变化时的 Ron 变化很大)开关芯片,开关电流在一个比较宽的范围都可以非常精准,这样将允许设计者在设计方案时不必留有太大的余量即可满足较大的工作温度范围,提高电路的使用安全性。

对于 YT2603,其典型的最大开关电流限制值约为 0.25A,在一个设计在 80V 反射电压的反激式电源中,可以容易地实现大于 5W 的输出功率,且满足宽的温度范围。


7. 散热的要求

对于一个典型的功率开关而言,应使用必要的散热措施,以避免过高的温度导致热保护。IC 内部主要的发热是开关管的开关损耗产生的热量,因此恰当的散热位置是 IC 的 Pi n7-Pi n8 脚,一个易于使用的方法是在 Pi n7-Pi n8 脚铺设一定面积的 PCB 铜箔,尤其在铜箔之上镀锡处理将大大增加散热能力。对于一个 85-265V 输入,5W 输出的典型应用,130mm²的铜箔面积是必要的。

无锡颐鼎科技有限公司


参考布线如下图:

无锡颐鼎科技有限公司

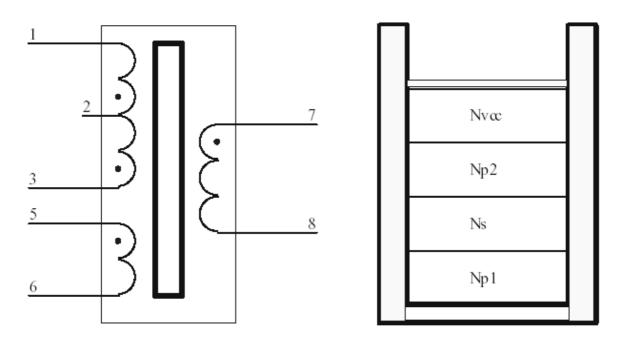
典型应用电路 (输入 85-265V, 输出 5V 1A)

无锡颐鼎科技有限公司

元器件清单

序号	元件名称	规格/型号	封装	数量	标号	
1	电阻	100R	0805	1	R5	
2		1K	0508	1	R6	
3		4.7K	1206	2	R1	R9
4		10K , 1%	0805	1	R7	
5		10.5K , 1%	0805	1	R8	
6		75K	1206	1	R4	
7		1M	1206	2	R2	R3
8	电容	331J/50V	0805	1	C4*	
9		222/1KV	1206	1	C5	
10		103/50V	0805	1	C3	
11		22350V	0805	1	C7	
12		104/50V	0805	1	C8	
13	Y电容	222M/400V	CT7, Y1	1	CY1	
14	电解电容	6.8uF/400V	EC3, 5-8	2	C1	C2
15		2. 2uF/16V	EC3-5	1	C6	
16		220uF/16V	EC3-6.3	1	С9	
17		470uF/16V	EC3.5-8	1	C10	
18	二极管	I N4001	D0-35	1	D3	
19		FR107	D0-41	1	D2	
20		5819	D0-41	1	D4	
21	整流桥	DF06S	DF-S	1	D1	
22	发光管	LED2.5	D2.5	1	D5	
23	色码电感	EC-332K	D4*8mm	1	L1	
24	工型电感	DR6*8, 10uH	DR6*8	1	L2	
25	变压器	EE16	EE16-P10	1	T1	
26	保险管	F1A/250V	D4*10mm	1	RF1	
27	压敏电阻	7D471K	CT7	1	TZ1	
28	IC	YT2603	DIP8	1	IC1	
29		TL431	T092	1	IC2	
30		PC817B	DIP4	1	IC3	
31	线路板	PCB, 28*53mm		1		

无锡颐鼎科技有限公司


变压器绕制:

1. 磁心参数

Core: EE16, TDK PC40 Ae=19.8 mm² Aw=39.8 mm²

Bobbin: EE16, 10PIN, 4+6PIN, VELOX 420-SE0, 94V0 LP=3. 1Mh ± 10%

2. 绕线图

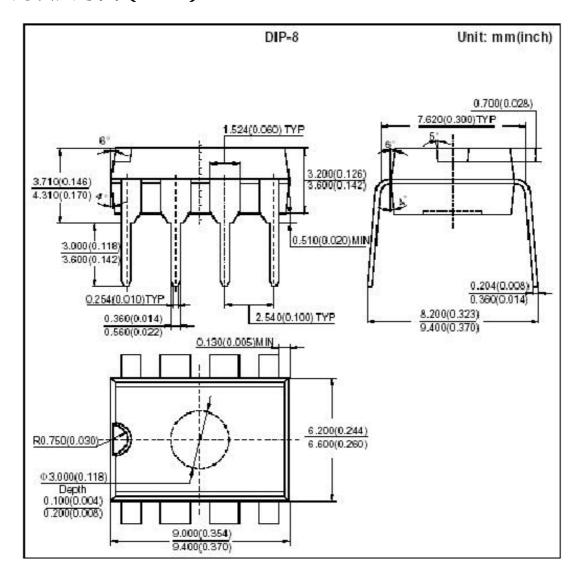
3. 绕线数据

序号	名称	规格	方向	匝/层数	备注
1	Np1,第一段主绕组	FO. 2mm*1P, 2UEW	2-1	80TS	密绕
2	绝缘胶纸	3M, NO. 1350	-	3 层	-
3	Ns,输出绕组	FO. 5mm*1P, 3UEW	7-8	11TS	疏绕
4	绝缘胶纸	3M, NO. 1350	-	3 层	-
5	Np2,第二段主绕组	FO. 2mm*1P, 2UEW	3-2	80TS	密绕
6	绝缘胶纸	3M, NO. 1350	-	2 层	-
7	Nvcc,IC供电绕组	FO. 2mm*1P, 2UEW	5-6	13TS	疏绕
8	绝缘胶纸	3M, NO. 1350	_	3 层	-

注:变压器外部包绕铜皮 1.1TS 并焊接后连接到 PIN6。

无锡颐鼎科技有限公司

IC 参考结温与热阻


DIP8 封装结温数据(参考)

(JC)	20	/W
(JC) ²	70	/W

注:1. 测试点以 PIN7,8 靠近封装面的位置。

2. PIN7,8连接在一个2盎司的镀锡铜皮上,铜皮面积不小于250 mm²

封装尺寸图 (DIP8)

备注:YT26 系列可替代TH和TFC全系列。

无锡颐鼎科技有限公司