

产品概述:

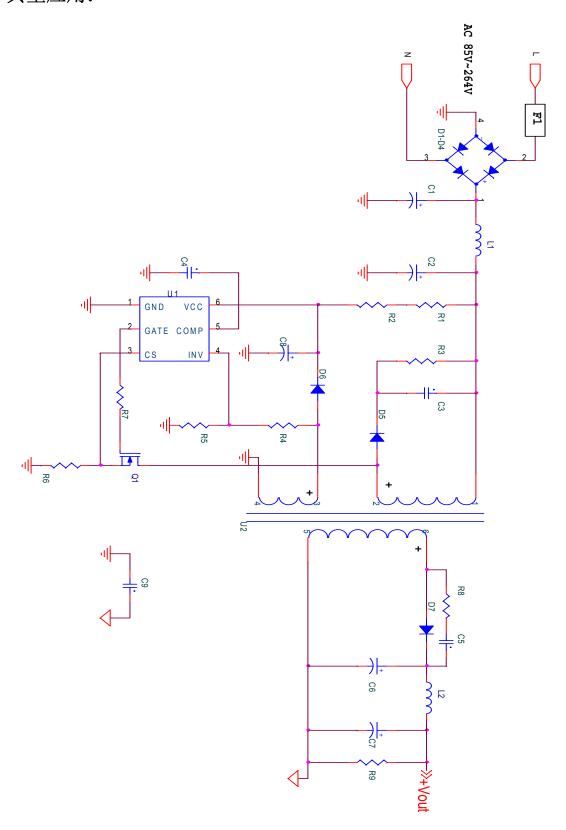
OCE5260是一款高性能离线式 PFM 电源管理 IC,可用在小功率交流 转直流充电器和适配器中,其采用原 边反激拓扑应用电路,省掉了光耦和 TL431。内部集成高精度恒压和恒流控 制器,可实现±5%的精度。

在恒流工作模式下,输出电流和输出功率都是通过 CS 脚外接的 RS 电阻来调节。在恒压工作模式下,INV 脚通过采样辅助绕组电压来稳定输出电压。值得注意的是,OCE5260通过内置的线补功能实现高负载调整率。在恒流且输出重载时,OCE5260通过PFM 方式调节频率稳定输出;恒压轻载时,通过 PWM 方式调节导通占空比稳定输出。

OCE5260集成多种保护功能: 软启动、逐周期电流限制、VCC 过压保护、VCC 过压箝位和欠压锁定等功能; 另外内置抖频技术可提高抗 EMI 能力。

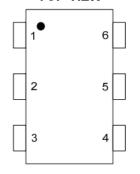
OCE5260采用 SOT23-6 封装形式。

功能特性:

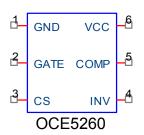

- 全电压输入范围内±5%输出恒压/ 恒流精度
- 原边检测,无需光耦和 TL431
- 内置自适应峰值电流调节控制
- 内置初级绕组电感补偿
- 可编程线压降补偿
- 开机软启动技术
- 内置前沿消隐技术
- 逐周期电流限制技术
- VCC 过压保护/欠压锁定/过压箝位 功能

应用领域:

- 便携式手机充电器
- LED 照明驱动电源
- 数码相机充电器
- 小功率适配器
- 台式机/电视机辅助电源等


典型应用:

封装信息:


TOP VIEW

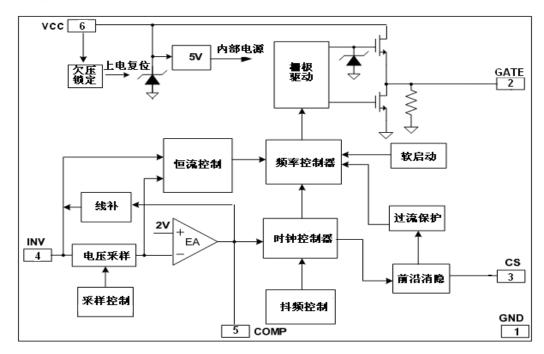
Y: 年份; O: 订单号; T: SOT; Q: 量产; X: 封装厂;

管脚说明:

管脚序号	管脚名称	管脚描述		
1	GND	接地脚		
2	GATE	图腾柱栅极驱动输出脚		
3	CS	电流检测输入脚		
4	INV	辅助绕组电压反馈端, 通过分压电阻连接到反馈绕组上		
5	COMP	恒压模式下环路补偿端,		
6	VCC	电源输入脚		

极限参数:

参数	数值		
VCC 输入电压	-0.3V to Vcc_clamp		
VCC 箝位流入最大电流	10mA		
COMP 电压	-0.3V to 7V		
CS 输入电压	-0.3V to 7V		
INV 输入电压	-0.3V to 7V		
最大结点工作温度 Tj	150℃		
存储温度范围	-55 to 150℃		
焊接温度	260℃/10S		


电气特性:

(Ta=25°C,VCC=16V)

符号	参数	测试条件	最小值	典型值	最大值	单位
电源供应部分)		•			•
I_{DD_ST}	启动电流	VCC=13V	-	5	20	uA
I_{DD_OP}	工作电流	INV=1. 9V, CS=0V, VCC=16V	-	2	3	mA
UVLO (ON)	VCC 欠压锁定	VCC 下降时	8. 2	9. 0	10. 5	v
	开启电压					
UVLO (OFF)	VCC 欠压锁定	VCC 上升时	13. 5	14. 5	16. 0	v
	关断电压					
VCC_clamp	VCC 最大工作	Idd=10mA	27	28. 5	30	v
vcc_cramp	电压					
Vovp	过压保护电压	增加 VCC 电压直到频率关断	26	27. 5	29	V
电流检测输入部	7分					_
$T_{\it LEB}$	前沿消隐时间			600		Ns
V_{th_oc}	过流保护		750	800	850	mV
v th_oc	检测电压					
T_{D_oc}	过流延迟			110		ns
$Z_{\it SENSE_IN}$	输入阻抗		50			KΩ
T_{SS}	软启动时间			10		mS
频率振荡部分						
Freq_Max	IC 最大		55	60	65	Khz
rreq_max	工作频率					
Freq_Nom	正常工作频率			50		Khz
Freq_startup		INV=0, Comp=4.5V		14		Khz
△f/Freq	抖频范围			±5		%
误差放大部分						
Vref_EA	反馈基准电压		1. 97	2	2. 03	V
Gain	直流增益			60		dB
I_Comp_Max	最大线补电流	INV=2V, Comp=0V		40		uA
栅极驱动输出部	邓分					
VOL	输出低电平	Io=20mA			1	V
VOH	输出高电平	Io=20mA	8			V
V_clamp	输出箝位电压			16		V
T_r	输出上升时间			650		ns
T_f	输出下降时间			40		ns

结构框图:

工作原理描述:

OCE5260 是一款高性价比 PFM 控制电源管理 IC,可用在离线式小功率 AC/DC变换器中,例如电池充电器、手机充电器、小功率 LED 驱动电源、适配器等。OCE5260 采用原边反激拓扑架构,无需光耦和 TL431 即可实现稳定输出。CC/CV 精度高达±5%。

● 启动电流和启动控制

OCE5260的启动电流非常小,当 VCC 被充电且电压高于其欠压锁定关 断电压后,OCE5260 快速启动,在应 用设计时,为了降低系统损耗,启动 电阻应选择兆欧级。

● 软启动

OCE5260内置软启动功能,开机时可减小元器件承受的电压应力。一旦 VCC 的电压达到欠压锁定关断电压,内部控制器控制峰值电流流过限流电阻所产生的电压从 0 逐渐上升到阈值电压 0.8V,且每次启动均为软启动。

● 恒流恒压

OCE5260具有高精度的恒流恒压特性,如图1所示:.

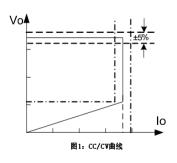


图 1

电池充电中,OCE5260通过 INV 脚自动检测电池电压来决定工作模式。如果经分压电阻在变压器辅助绕组端采集的电压低于 2V,采用恒流充电;如果采样电压等于 2V,采用恒压充电。采用这样的方式充电可确保电池电量最大限度被充满。

适配器应用中, OCE5260 只工作 在恒压模式下, 恒流控制电路此时只 起到过流限制作用。在恒压模式下, QQ:845200166

VCC 电压是由 INV 外接的分压电阻比值来决定的,可通过下式计算得出:

$$V_{cc} = V_{INV} \times (1 + \frac{R_A}{R_B});$$
 (1)

此时 V_{NV} =2V, R_A 为与辅助绕组相连

接的电阻, R_B 为 INV 对地电阻,该电阻阻值决定线补功能大小,电阻阻值越大,线补功能就越强。

● 工作原理

OCE5260为实现高精度恒流恒 压控制,整个电源系统须工作在不连 续模式。

在不连续反激转换应用中,输出电压由辅助绕组来决定。当 MOSFET 导通时,负载电流由输出滤波电容提供,原边电流呈斜坡上升,变压器存储能量。当 MOSFET 关断时,存储在变压器磁心中的能量传递到输出端。下式为原边电流与输出电流之间的关系:

$$I_{S} = \frac{N_{P}}{N_{S}} \times I_{P} \tag{2}$$

变压器辅助绕组电压与输出电压 之间的关系可参考下式:

$$V_{AUX} = \frac{N_{AUX}}{N_o} \times (V_o + \Delta V)$$
 (3)

 ΔV 为整流二极管上的压降,如**图 2** 所示,

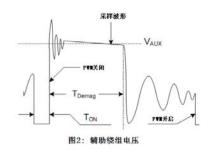


图 2

INV 脚通过分压电阻与辅助绕组连接,辅助绕组上的电压在退磁结束

时被采样并保持采样值直到下一次采样。采样电压与内部 2V 基准电压比较并被放大。误差放大器输出 COMP 电压反映了负载的状况,同时控制脉宽调制导通占空比,进一步实现恒压控制。

当采样电压低于基准电压且误差 放大器输出 COMP 电压达到最大值 时,其开关频率通过采样电压控制输 出电压去调节输出电流,进而实现恒 流控制。

● 可调恒流和输出功率

恒流点和最大输出功率是通过连接在 CS 脚的限流电阻 RS 来调节的。输出功率随着恒流点的改变而改变,RS 越大,恒流点和输出功率就越小,图 3 为其特性曲线:

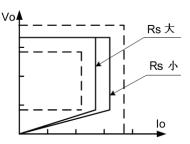


图3:输出电流、功率与Rs关系曲线

图 3

● 工作频率

OCE5260的工作频率可根据输出负载和工作模式进行自我调节,不需要通过外围器件来设置,其内部最大工作频率可达 60Khz。

在不连续反激工作模式下,其最 大输出功率可通过下式计算:

$$P_{O(MAX)} = \frac{1}{2} \times L_P \times F_{SW} \times I_P^2$$
 (4)

Lp 为变压器原边电感量;

Ip 为变压器原边峰值电流:

对照公式 4, 改变变压器原边电感量就可以改变最大输出功率。但是, 为了系统能够安全工作, OCE5260必须工作在不连续模式下。为此, 开关

频率被内部锁定,可通过下式计算得出:

$$F_{SW} = \frac{1}{2 \times T_{DEMAG}} \tag{5}$$

T_{DEMAG} 与变压器原边电感量成 反比,所以电感量和工作频率的乘积 为定值,从而限制了最大输出功率。

● 电流检测及前沿消隐

OCE5260采用逐周期电流检测PFM 控制方式,开关电流检测通过检测 CS 脚外接电阻的电压来实现。前沿消隐电路可以滤掉 MOSFET 开关时所产生的峰值电压,而外部也不再需要RC 滤波器。

OCE5260正常工作时占空比由 采样电流的输入信号和误差放大器的 输出信号 COMP 共同决定。

● 栅极驱动

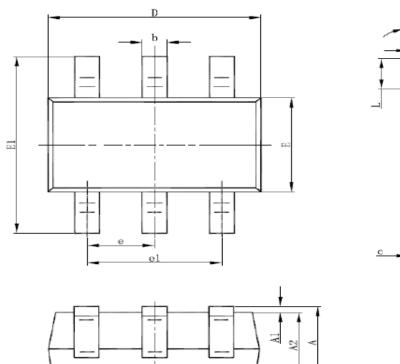
OCE5260外置 MOSFET 是由专门的栅极驱动电路来控制的。栅极驱动能力小会带来高的导通和开关损耗,影响系统的散热和效率,驱动能力大会增大 EMI,所以 OCE5260 内部采用图腾柱式栅极驱动控制技术,

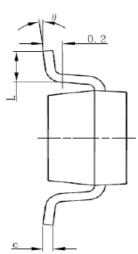
解决驱动能力不合适所带来的设计困扰。

● 可调线压降补偿

OCE5260 线压降补偿功能提高了负载调整率。INV 脚流出的电流在外部分压电阻上产生偏置电压,该电压与 COMP 脚电压和输出负载电流成反比。即输出负载电流从满载变为空载,这个偏置电压的值将会增加。可以通过改变分压电阻的阻值来调节线压降补偿的大小。

● 保护控制


OCE5260为提高电源系统的可靠性集成了多种保护功能。其中包括:逐周期限流控制、VCC过压箝位、软启动和 VCC 欠压锁定功能等。VCC是依靠变压器的辅助绕组来供电。对OCE5260来讲,当 VCC 的电压低于欠压锁定开启电压时,开关管将被关断,同时进入重启状态,每次重启都具有软启动特性。



封装尺寸:

SOT23-6

QQ:845200166

符号	毫米		英寸		
	最小值	最大值	最小值	最大值	
Α	1.000	1.300	0.039	0.051	
A1	0.000	0.150	0.000	0.006	
A2	1.000	1.200	0.039	0.047	
b	0.300	0.500	0.012	0.020	
С	0.100	0.200	0.004	0.008	
D	2.800	3.020	0.110	0.119	
E	1.500	1.700	0.059	0.067	
E1	2.600	3.000	0.102	0.118	
е	0.950 (BSC)		0.037 (BSC)		
e1	1.800	2.000	0.071	0.079	
L	0.300	0.600	0.012	0.024	
θ	0°	8°	0°	8°	