高端电流检测2MHz高亮度LED驱动器 特点

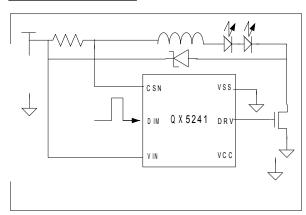
概述

QX5241 是一款降压、恒流、高效率的高亮度 LED 驱动器。输入电压范围从 5.5V 到 36V。通 过外接一个电阻设定输出电流。通过 DIM 引脚 实现辉度控制功能。QX5241 特别适合宽输入电 压范围的应用。高端电流检测达到±5%的电流 精度,同时只需很少的外接元件。由于采用滞 环控制方式,QX5241 对负载瞬变具有非常快的 响应速度,对输入电压具有高的抑制比。电感 电流纹波为 20%。最高工作频率可到 2MHz。工 作温度范围从-40 到 125 度。采用 SOT23-6 封 装。

应用

- ·建筑、工业、环境照明
- ·汽车尾灯、雾灯、RCL、DRL
- · MR16 及其它 LED 灯

1レート- ユカト-


技术、索样、方案、供应: 15118101060 陈先生 技术、索样、方案、供应 **00**: 1796943430

深圳广德电子科技有限公司

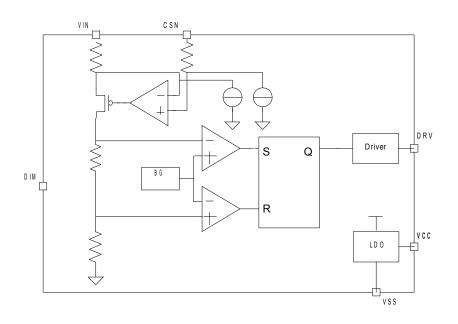
V IN ______ V C C

- 高端电流检测
- 辉度控制
- 最大 20KHz 辉度控制频率
- 滞环控制: 无需补偿
- 高达 2MHz 工作频率
- ± 5% 电流精度
- 恒流输出
- 5.5V 到 36V 输入电压
- 高达 25W 输出功率
- 5V, 2mA 片上稳压器
- -40 到 125 度工作温度范围
- 小的 SOT 23-6 封装

典型应用电路

www.qxmd.com.cn 1 of 7

引脚定义

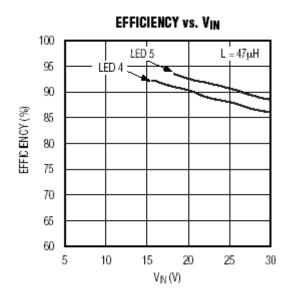

编号	管脚名称	功能描述	
1	CSN	电流检测端	
2	DIM	辉度控制端	
3	VIN	电源输入端	
4	VCC	LDO 输出端	
5	DRV	功率管栅极驱动端	
6	VSS	接地	

极限参数

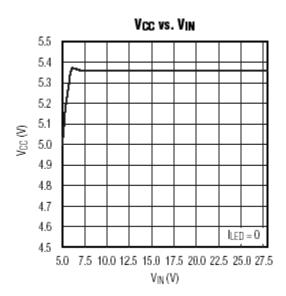
符号	参数	数值	单位
VMAX	IC 各端极限电压	40	V
IMAX	IC 各端极限电流(VIN, VCC,DRV 除外)	20	mA
TOPR	工作温度范围	-40 ~ +125	\mathbb{C}
T_{STG}	存贮温度	- 65 ∼ +150	\mathbb{C}
PMAX	持续消耗功率	1454	mW
V _{ESD}	ESD 电压(人体模型)	2000	V

www.qxmd.com.cn 2 of 7

电路框图

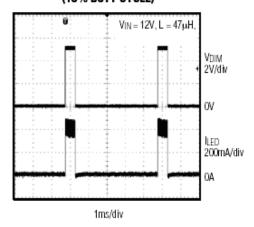

www.qxmd.com.cn 3 of 7

电气特性

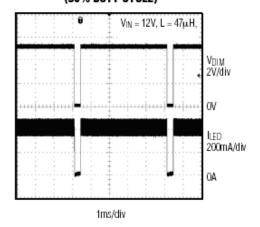

符号	参数描述	条件	最小	典型	最大	单位
VIN	输入电压范围		5.5		36	V
fsw	开关频率				2	MHz
IGND	接地端电流	DRV open			5	mA
IIN	输入电流	VDIM < 0.6V			400	uA
UVLO	欠压保护	VIN = VCSN = VDIM, VIN falling from 6V, VDRV < 0.5V		4.5	5.0	V
HYSUV	欠压保护迟滞			0.5		V
电流检测比	较器					
VSNSHI	检测电压高端	(VIN - VCSN) rising from 0V until VDRV <0.5V		220		mV
VSNLO	检测电压低端	(VIN - VCSN) falling from 0.26V until VDRV >(VCC - 0.5V)		180		mV
tDPDH	输出高电平的传输延迟			80		ns
tDPDL	输出低电平的传输延迟			80		ns
ICSN	电流检测比较器输入电流			5		uA
CS-HYS	电流检测阈值电压迟滞			40		mV
辉度控制						
fDIM	最大 DIM 频率				20	KHz
VIH	DIM 输入高电平	VCSN = VIN, increase DIM until VDRV > (VCC - 0.5V)	2.8			V
VIL	DIM 输入低电平	VCSN = VIN, decrease DIM until VDRV < 0.5V			0.6	V
DIM-HYS	DIM 迟滞			200		mV
tDIMON	DIM 导通时间	DIM rising edge to VDRV = 0.5 x VCC, CDRV = 1nF		100		ns
tDIMOFF	DIM 关断时间	DIM falling edge to VDRV = 0.5 x VCC, CDRV = 1nF		100		ns
	DIM 输入高电平的漏电流	VDIM = VIN			10	uA
	DIM 输入低电平的漏电流	VDIM = 0			1	uA
LDO 特性						
VCC	LDO 输出电压	IVCC = 0.1 mA to 5 mA, $VIN = 5.5$ V to 36 V	4.5		5.5	V
	负载调整特性	IVCC = 0.1 mA to 5 mA, V IN = 12 V		4		Ohm
	电源调整特性	VIN = 6V to $36V$, $IVCC = 5mA$		11		mV
PSRR	电源抑制比	VIN = 12V, $IVCC = 2mA$, $fIN = 10kHz$		-35		dB
tSTRAT	启动时间	VCC = 0 to $4.5V$		350		us

www.qxmd.com.cn 4 of 7

典型效率输出曲线图



LDO 特性曲线



PWM 辉度控制

PWM DIMMING AT 200Hz (10% DUTY CYCLE)

PWM DIMMING AT 200Hz (90% DUTY CYCLE)

www.qxmd.com.cn 5 of 7

应用指南

1. 选择电阻 RSENSE 设定输出电流

输出电流通过连接在 VIN, CSN 之间的电阻 RSENSE 来设定。输出电流计算公式为:

$$ILED = \frac{0.2}{RSENSE}$$

2.电感选择

电感的大小会影响工作频率。电感越小工作频率越高。工作频率的计算公式为:

$$f_{SW} = \frac{(VIN - n \times VLED) \times n \times VLED \times RSENSE}{VIN \times \Delta V \times L}$$

其中 n 是 LED 的个数, VLED 是一个 LED 的前向导通电压, $\Delta V = (VSNSHI - VSNSLO)$ 。

3. 辉度控制

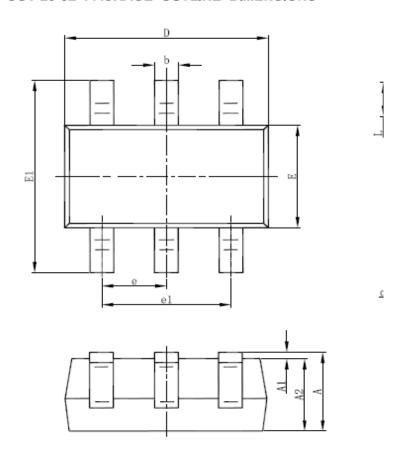
DIM 引脚是辉度控制输入端。DIM 接低电平则 DRV 输出低电平, DIM 接高电平则 DRV 按照一定的占空比正常输出开关信号。如果不需辉度控制功能则将 DIM 端与 LDO 的输出端 VCC 短接。

4. MOS 管的选择

MOS 管的耐压值应高过最大输入工作电压。选择导通电阻小的 MOS 管有助于提高转换效率。

5. LDO 输出端

LDO 的输出端 VCC 需接一个大于等于 1uF 的电容。LDO 可提供最大 5mA 的输出电流。


6. 输入滤波电容

电源输入端 VIN 需接 47 至 100uF 的滤波电容, 电容的耐压值应高于最大输入电压。

www.qxmd.com.cn 6 of 7

封装尺寸

SOT-23-6L PACKAGE OUTLINE DIMENSIONS

Ch a l	Dimensions I	n Millimeters	Dimer	
Symbol	Min	Max	Min	

www.qxmd.com.cn 7 of 7