PMP8020 TPS92560 High Power 20W Boost LED Driver Reference Design

July, 2013

High Power 20W Boost LED Driver Reference Design

1 Introduction

This reference design is to demonstrate a very good compatibility of power source boost topology LED driver based on TPS92560. This LED driver is designed for converting a power source **DC**, **AC & E-transformer** to a **regulated average LED current**.

The operating conditions and performance of the reference design are as follows:

- Power source: 12VDC, 12VAC / 50Hz 60Hz or 12VAC E-transformer.
- LED Load: 30V 40V LED voltage, 500mA regulated average LED Current
- Typical System Efficiency = 86% @ 12V DC
- High Power Factor > 0.9 @ 12V AC
- Output open-circuit protection

2 Connection Description

1. CN1

This connector is for the LED load. Use the screw down terminal to connect the LED anode to the pin marked LED+ and connect the LED cathode to the pin marked LED-.

2. CN2

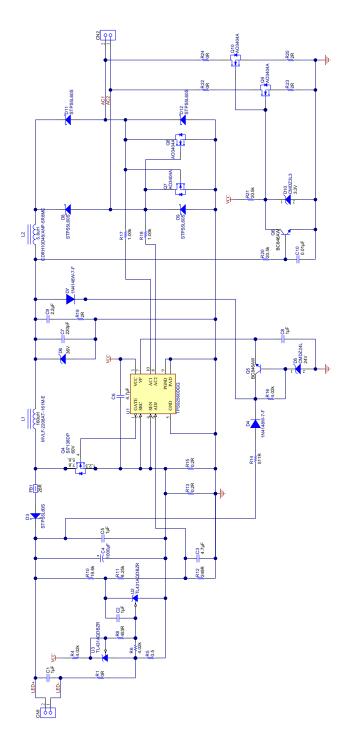
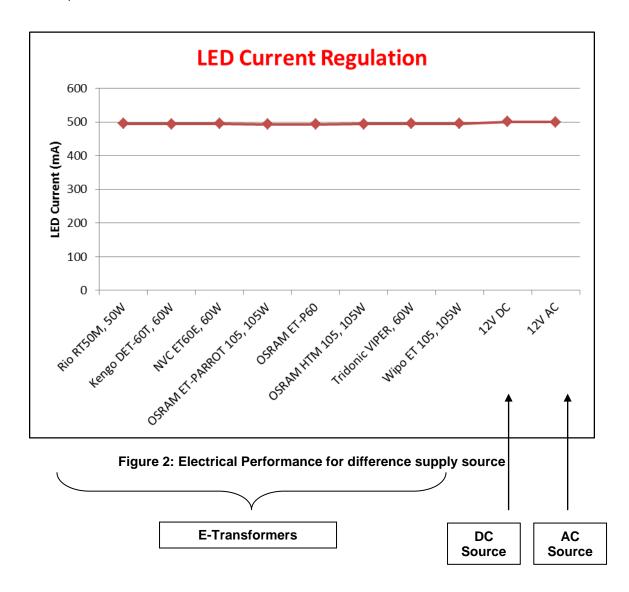

This connector is for the AC/DC input supply to the board. Use the screw down terminal to connect supply to the circuit.

Photo 1: Connection Diagram

3 Schematic

4 Performance Data and Typical Characteristic Curves


Figures 2 through 7 present typical performance curves for TPS92560 20W Boost LED Driver

Specifications

- Output Power ≈ 20W
- Input Voltage = 12VDC, or 12Vac / 50Hz 60Hz, or 12VAC E-transformer
- LED Forward Voltage ≈ 40V
- LED Current ≈ 500mA
- Efficiency > 86% @ 12VDC
- Power Factor ≥ 0.9 @ 12VAC
- Topology: Boost

Test Conditions

- LED Forward Voltage ≈ 40V
- LED Current ≈ 500mA
- Ambient Temperature ≈ 25°C

Electrical Performance for DC Source

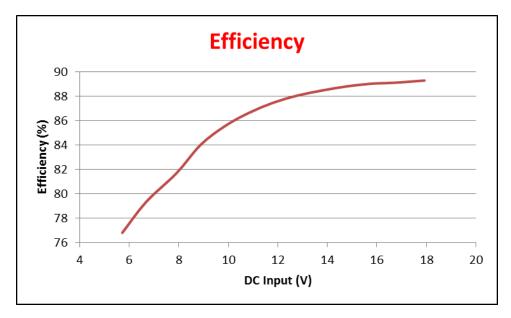
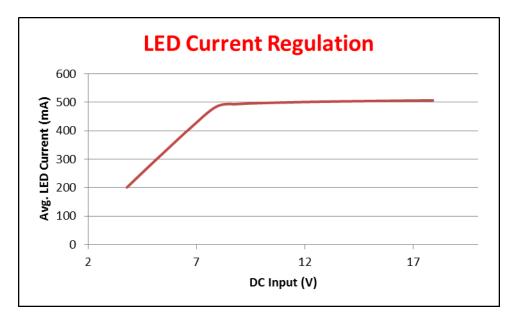



Figure 3: Efficiency at DC Supply Source

Electrical Performance for AC / 50Hz source

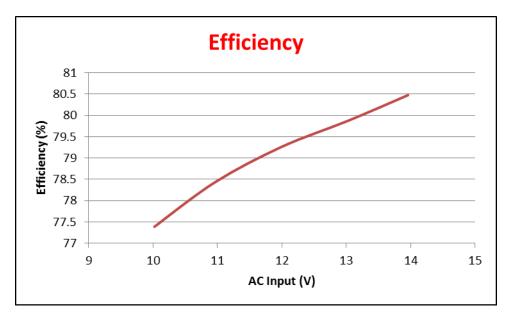
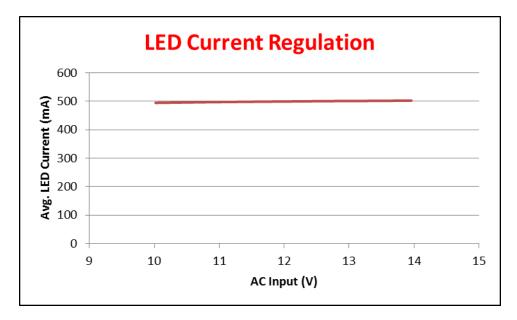



Figure 5: Efficiency at AC Supply Source

Figure 6: LED Current Regulation at AC Supply Source

Waveform for E-Transformer Source operation

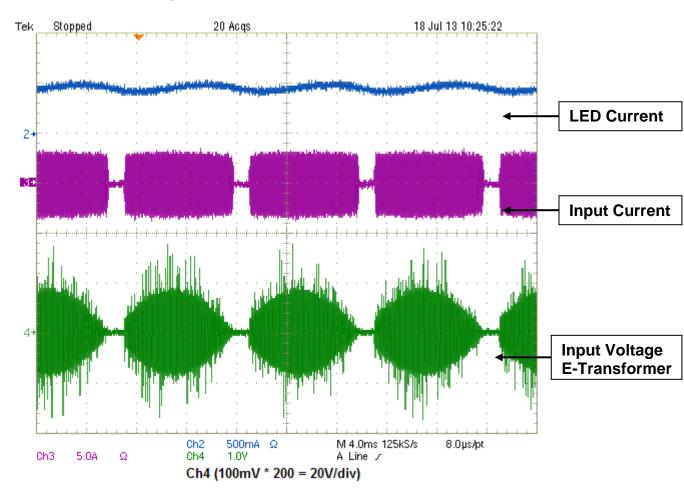
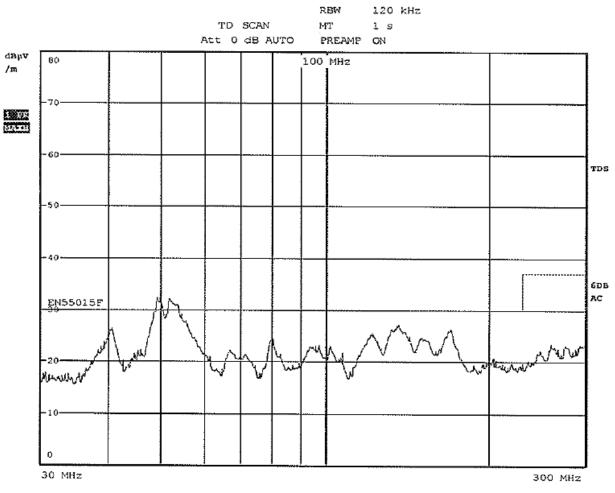



Figure 7: Waveform for E-Transformer (Osram ET-A60)

5 EMI Performance

Test Specification/Standard:	EN55015
Antenna:	Height=3m / Range = 10m
Operation Condition:	with E-Transformer (Osram ECO-ET60) at 230VAC 50Hz

Figure 8: Radiated EM	(Vertical) Scan
-----------------------	-----------------

	Frequency	Detector	Ant.	Ant.	Turntable	Result	Limit	Margins
		Туре	Pol.	Height	Azimuth			&
	(MHz)	(pk/av/qp)	(H/V)	(m)	(°)	(dBµV/m)	(dBµV/m)	Comments
14	49.700	æP	V	1.0	300	27.7	30.0	Pass
1Ý	52.640	&p	V	ルロ	D	27.7	30.0	Pass

Figure 9: QPK Measurement (Vertical)

TEXAS INSTRUMENTS

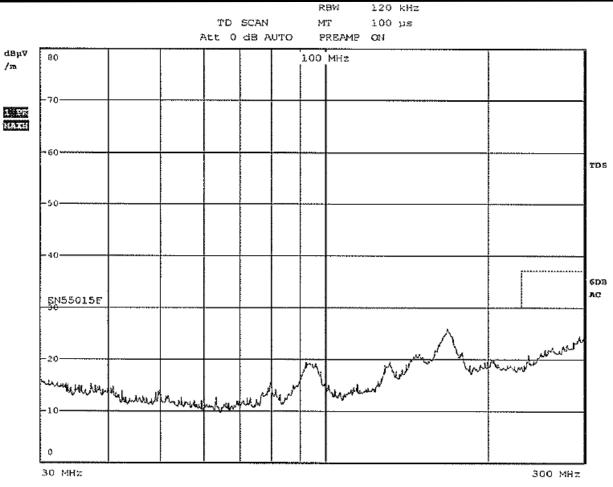


Figure 10: Radiated EMI (Horizontal) Scan

TEXAS INSTRUMENTS

6 TPS92560 High Power 20W Boost LED Driver Reference Design PCB layout

The following figures (Figure 11 through Figure 12) show the design of the printed circuit board.

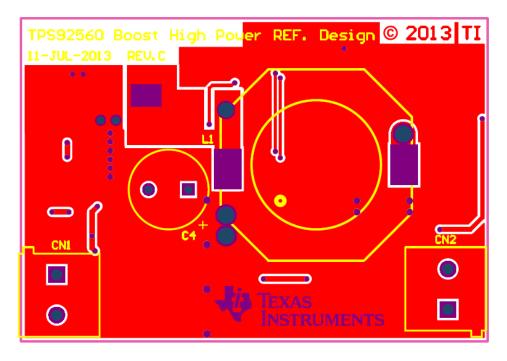


Figure 11: Top Layer and Top Overlay (Top view)

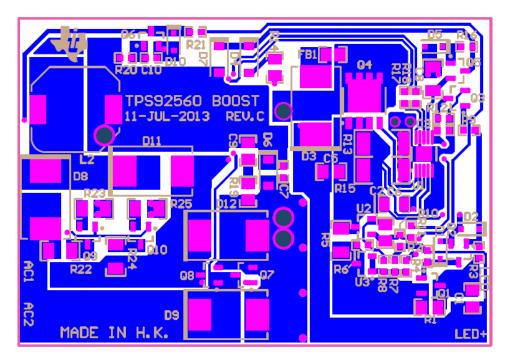


Figure 12: Bottom Layer and Bottom Overlay (Bottom view)

Bill of Materials

Designator	Description	Manufacturer	PartNumber	Quantity
	CAP, CERM, 1uF, 50V, +/-10%, X7R, 0805	MuRata	GRM21BR71H105KA12L	3
C3	CAP, CERM, 4.7uF, 16V, +/-10%, X5R, 0603	MuRata	GRM188R61C475KAAJ	1
C4	CAP ALUM 1000UF 50V 20% RADIAL	United Chemi-Con	EKZE500ELL102ML25S	1
C6	CAP, CERM, 4.7uF, 10V, +/-10%, X5R, 0805	MuRata	GRM219R61A475KE34	1
C7	CAP, CERM, 220pF, 100V, +/-5%, C0G/NP0, 0603	MuRata	GRM1885C2A221JA01D	1
C8	CAP, CERM, 1uF, 50V, +/-10%, X7R, 1206	MuRata	GRM31MR71H105KA88L	1
C9	CAP, CERM, 2.2uF, 25V, +/-10%, X7R, 0805	MuRata	GRM21BR71E225KA73L	1
C10	CAP, CERM, 0.01uF, 50V, +/-10%, X7R, 0603	MuRata	GRM188R71H103KA01D	1
CN1, CN2	Conn Term Block, 2POS, 5.08mm PCB	Phoenix Contact	1715721	2
D3, D8, D9, D11, D12	Diode, Schottky, 60V, 5A, SMC	ST	STPS5L60S	5
D4, D7	Diode, Ultrafast, 100V, 0.15A, SOD-123	Diodes Inc.	1N4148W-7-F	2
D5	Diode, Zener, 24V, 250mW, SOD-323	Central Semiconductor	CMDZ24L	1
D6	Diode, Zener, 36V, 500mW, SOD-123	Central Semiconductor	CMHZ4715	1
D10	Diode, Zener, 3.3V, 250mW, SOD-323	Central Semiconductor	CMDZ3L3	1
FB1	6A Ferrite Bead, 26 ohm @ 100MHz, SMD	MuRata	BLM18SG260TN1D	1
L1	Inductor, 160uH, 3A, 0.07 ohm, Shield Core, Ferrite, SMT	MAG. LAYERS	MVLF-2208AT-161M-E	1
L2	Inductor, 5.8uH, SMD	SUMIDA AMERICA COMPONENTS INC	CDRH10D48/ANP-5R8MC	1
Q4	MOSFET, N-CH, 60V, 30A, PowerPAK SO-8	Vishay-Siliconix	SI7138DP	1
Q5, Q6	Transistor, NPN, 65V, 0.1A, SOT-23	ON Semiconductor	BC846AW	2
Q7, Q8, Q9, Q10	MOSFET, N-CH, 30V, 5.8A, SOT-23		AO3404A	4
R1	RES, 0 ohm, 5%, 0.125W, 0805	Vishay-Dale	CRCW08050000Z0EA	1
R4, R6, R16	RES, 4.02k ohm, 1%, 0.1W, 0603	Vishay-Dale	CRCW06034K02FKEA	3
R5	RES, 0.5 ohm, 1%, 0.5W, 1206	Stackpole Electronics	CSR1206FKR500	1
R8	RES, 453 ohm, 1%, 0.1W, 0603	Vishay-Dale	CRCW0603453RFKEA	1
R10	RES, 19.6k ohm, 1%, 0.1W, 0603	Vishay-Dale	CRCW060319K6FKEA	1
R11	RES, 8.25k ohm, 1%, 0.1W, 0603	Vishay-Dale	CRCW06038K25FKEA	1
R12	RES, 249 ohm, 1%, 0.1W, 0603	Vishay-Dale	CRCW0603249RFKEA	1
	RES, 0.2 ohm, 1%, 0.5W, 1210	Rohm	MCR25JZHFLR200	2
R14	RES, 511 ohm, 1%, 0.125W, 0805	Vishay-Dale	CRCW0805511RFKEA	1
R17, R18	RES, 1.00k ohm, 1%, 0.1W, 0603	Vishay-Dale	CRCW06031K00FKEA	2
	RES, 2.00 ohm, 1%, 0.125W, 0805	Vishay-Dale	CRCW08052R00FKEA	1
	RES, 20.5k ohm, 1%, 0.1W, 0603	Vishay-Dale	CRCW060320K5FKEA	2
R22, R24	RES, 0 ohm, 5%, 0.25W, 1206	Vishay-Dale	CRCW12060000Z0EA	2
	RES, 2.00 ohm, 1%, 0.25W, 1206	Vishay-Dale	CRCW12062R00FKEA	2
U1	SIMPLE LED DRIVER FOR MR16 AND AR111 APPLICATIONS, DGQ0010A	Texas Instruments	TPS92560DGQ	1
U2, U3	Adjustable Precision Zener Shunt Regulator, 3-pin SOT-23	Texas Instruments	TL431AQDBZR	2

Table 1: The TPS92560 20W Boost components list according to the schematic shown in Figure 1

8 Appendix – Short Circuit Protection

For an accidental short across the LED+ and LED– terminals of the board, external short protection circuitry should be given sufficient protection to prevent the damage of components. For reconnecting terminals with a LED load, the LED could instantly light on.

8.1 Schematic

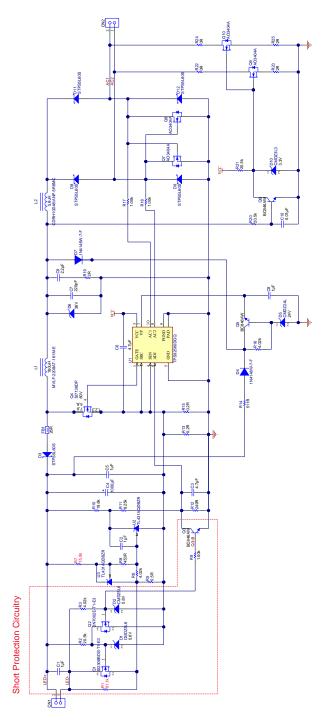


Figure 13: TPS92560 20W Boost LED Driver with Short Protection Schematic

8.2 Bill of Materials

Designator	Description	Manufacturer	PartNumber	Quantity	
	CAP, CERM, 1uF, 50V, +/-10%, X7R, 0805	MuRata	GRM21BR71H105KA12L	3	
C3	CAP, CERM, 4.7uF, 16V, +/-10%, X5R, 0603	MuRata	GRM188R61C475KAAJ	1	
C4	CAP ALUM 1000UF 50V 20% RADIAL	United Chemi-Con	EKZE500ELL102ML25S	1	
C6	CAP, CERM, 4.7uF, 10V, +/-10%, X5R, 0805	MuRata	GRM219R61A475KE34	1	
C7	CAP, CERM, 220pF, 100V, +/-5%, C0G/NP0, 0603	MuRata	GRM1885C2A221JA01D	1	
C8	CAP, CERM, 1uF, 50V, +/-10%, X7R, 1206	MuRata	GRM31MR71H105KA88L	1	
C9	CAP, CERM, 2.2uF, 25V, +/-10%, X7R, 0805	MuRata	GRM21BR71E225KA73L	1	
C10	CAP, CERM, 0.01uF, 50V, +/-10%, X7R, 0603	MuRata	GRM188R71H103KA01D	1	
		Phoenix Contact	1715721	2	
D1, D2	Diode, Zener, 5.6V, 250mW, SOD-323	Central Semiconductor	CMDZ5L6	2	
	Diode, Schottky, 60V, 5A, SMC	ST	STPS5L60S	5	
D11, D12					
D4, D7	Diode, Ultrafast, 100V, 0.15A, SOD-123	Diodes Inc.	1N4148W-7-F	2	
D5	Diode, Zener, 24V, 250mW, SOD-323	Central Semiconductor	CMDZ24L	1	
D6	Diode, Zener, 36V, 500mW, SOD-123	Central Semiconductor	CMHZ4715	1	
D10	Diode, Zener, 3.3V, 250mW, SOD-323	Central Semiconductor	CMDZ3L3	1	
FB1	6A Ferrite Bead, 26 ohm @ 100MHz, SMD	MuRata	BLM18SG260TN1D	1	
L1	Inductor, 160uH, 3A, 0.07 ohm, Shield Core, Ferrite,	MAG. LAYERS	MVLF-2208AT-161M-E	1	
	SMT				
L2	Inductor, 5.8uH, SMD	SUMIDA AMERICA	CDRH10D48/ANP-5R8MC	1	
		COMPONENTS INC			
Q1	MOSFET N-CH 60V 2.3A SOT23-3	Vishay Siliconix	SI2308BDS-T1-E3	1	
Q2	MOSFET, N-CH, 60V, 0.24A, SOT-23	Vishay-Siliconix	2N7002E-T1-E3	1	
	Transistor, NPN, 65V, 0.1A, SOT-23	ON Semiconductor	BC846AW	3	
Q4	MOSFET, N-CH, 60V, 30A, PowerPAK SO-8	Vishay-Siliconix	SI7138DP	1	
Q7, Q8,	MOSFET, N-CH, 30V, 5.8A, SOT-23		AO3404A	4	
Q9, Q10					
R1	RES, 51.1k ohm, 1%, 0.125W, 0805	Vishay-Dale	CRCW080551K1FKEA	1	
R2, R20,	RES, 20.5k ohm, 1%, 0.1W, 0603	Vishay-Dale	CRCW060320K5FKEA	3	
R21				-	
R3, R6,	RES, 4.02k ohm, 1%, 0.1W, 0603	Vishay-Dale	CRCW06034K02FKEA	3	
R16				-	
R5	RES, 0.5 ohm, 1%, 0.5W, 1206	Stackpole Electronics	CSR1206FKR500	1	
		Inc			
R7	RES, 15.0k ohm, 1%, 0.1W, 0603	Vishay-Dale	CRCW060315K0FKEA	1	
R8	RES, 453 ohm, 1%, 0.1W, 0603	Vishay-Dale	CRCW0603453RFKEA	1	
	RES, 1.00k ohm, 1%, 0.1W, 0603	Vishay-Dale	CRCW06031K00FKEA	3	
R18	_, _, _, _, _, _, _, _, _, _, _, _, _, _				
R10	RES, 19.6k ohm, 1%, 0.1W, 0603	Vishay-Dale	CRCW060319K6FKEA	1	
R11	RES, 8.25k ohm, 1%, 0.1W, 0603	Vishay-Dale	CRCW06038K25FKEA	1	
R12	RES, 249 ohm, 1%, 0.1W, 0603	Vishay-Dale	CRCW0603249RFKEA	1	
R13, R15	RES, 0.2 ohm, 1%, 0.5W, 1210	Rohm	MCR25JZHFLR200	2	
R14	RES, 511 ohm, 1%, 0.125W, 0805	Vishay-Dale	CRCW0805511RFKEA	1	
R19	RES, 2.00 ohm, 1%, 0.125W, 0805	Vishay-Dale	CRCW08052R00FKEA	1	
R22, R24	RES, 0 ohm, 5%, 0.25W, 1206	Vishay-Dale	CRCW12060000Z0EA	2	
	RES, 2.00 ohm, 1%, 0.25W, 1206	Vishay-Dale	CRCW12062R00FKEA	2	
U1	SIMPLE LED DRIVER FOR MR16 AND AR111	Texas Instruments	TPS92560DGQ	1	
	APPLICATIONS, DGQ0010A				
U2, U3	Adjustable Precision Zener Shunt Regulator, 3-pin	Texas Instruments	TL431AQDBZR	2	

Table 2: The TPS92560 20W Boost components list according to the schematic shown in Figure 13

EVALUATION BOARD/KIT/MODULE (REF DESIGN) WARNINGS, RESTRICTIONS AND DISCLAIMER

For Feasibility Evaluation Only, in Laboratory/Development Environments. The REF DESIGN is not a complete product. It is intended solely for use for preliminary feasibility evaluation in laboratory / development environments by technically qualified electronics experts who are familiar with the dangers and application risks associated with handling electrical / mechanical components, systems and subsystems. It should not be used as all or part of a production unit.

Your Sole Responsibility and Risk. You acknowledge, represent and agree that:

- 1. You have unique knowledge concerning Federal, State and local regulatory requirements (including but not limited to Food and Drug Administration regulations, if applicable) which relate to your products and which relate to your use (and/or that of your employees, affiliates, contractors or designees) of the REF DESIGN for evaluation, testing and other purposes.
- 2. You have full and exclusive responsibility to assure the safety and compliance of your products with all such laws and other applicable regulatory requirements, and also to assure the safety of any activities to be conducted by you and/or your employees, affiliates, contractors or designees, using the REF DESIGN. Further, you are responsible to assure that any interfaces (electronic and/or mechanical) between the REF DESIGN and any human body are designed with suitable isolation and means to safely limit accessible leakage currents to minimize the risk of electrical shock hazard.
- 3. Since the REF DESIGN is not a completed product, it may not meet all applicable regulatory and safety compliance standards (such as UL, CSA, VDE, CE, RoHS and WEEE) which may normally be associated with similar items. You assume full responsibility to determine and/or assure compliance with any such standards and related certifications as may be applicable. You will employ reasonable safeguards to ensure that your use of the REF DESIGN will not result in any property damage, injury or death, even if the REF DESIGN should fail to perform as described or expected.

Certain Instructions. Exceeding the specified REF DESIGN ratings (including but not limited to input and output voltage, current, power, and environmental ranges) may cause property damage, personal injury or death. If there are questions concerning these ratings please contact a TI field representative prior to connecting interface electronics including input power and intended loads. Any loads applied outside of the specified output range may result in unintended and/or inaccurate operation and/or possible permanent damage to the REF DESIGN and/or interface electronics. Please consult the REF DESIGN User's Guide prior to connecting any load to the REF DESIGN output. If there is uncertainty as to the load specification, please contact a TI field representative. During normal operation, some circuit components may have case temperatures greater than 60°C as long as the input and output ranges are maintained at nominal ambient operating temperature. These components include but are not limited to linear regulators, switching transistors, pass transistors, and current sense resistors which can be indentified using the REF DESIGN schemetic located in the REF DESIGN User's Guide. When placing measurement probes near these devices during normal operation, please be aware that these devices may be very warm to the touch.

Agreement to Defend, Indemnify and Hold Harmless. You agree to defend, indemnify and hold TI, its licensors and their representatives harmless from and against any and all claims, damages, losses, expenses, costs and liabilities (collectively, "Claims") arising out of or in connection with any use of the REF DESIGN that is not in accordance with the terms of this agreement. This obligation shall apply whether Claims arise under the law of tort or contract or any other legal theory, and even if the REF DESIGN fails to perform as described or expected.

<u>Safety-Critical or Life-Critical Applications</u>. If you intend to evaluate TI components for possible use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, such as devices which are classified as FDA Class III or similar classification, then you must specifically notify TI of such intent and enter into a separate Assurance and Indemnity Agreement.

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in such safety-critical applications.

TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products
Amplifiers
Data Converters
DSP
Clocks and Timers
Interface
Logic
Power Mgmt
Microcontrollers
RFID
RF/IF and ZigBee® Solutions

amplifier.ti.com dataconverter.ti.com dsp.ti.com www.ti.com/clocks interface.ti.com logic.ti.com power.ti.com microcontroller.ti.com www.ti-rfid.com www.ti.com/lprf

Applications

Audio Automotive Broadband Digital Control Medical Military Optical Networking Security Telephony Video & Imaging Wireless www.ti.com/audio www.ti.com/automotive www.ti.com/broadband www.ti.com/digitalcontrol www.ti.com/medical www.ti.com/military www.ti.com/opticalnetwork www.ti.com/security www.ti.com/video www.ti.com/video www.ti.com/wireless

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2008, Texas Instruments Incorporated