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Abstract-The snecific circuit effects in the phase-shifted 
pulse-width-modulated (PS-PWM) converter and their impact 
on the converter dynamics are analyzed. The small-signal model 
is derived incorporating the effects of phase-shift control and 
the utilization of transformer leakage inductance and power 
FET junction capacitances to achieve zero-voltage resonant 
switching. The paper explains the differences in the dynamic 
characteristics of the PS-PWM converter and its PWM coun- 
terpart. Model predictions are confirmed by experimental mea- 
surements. 

I. INTRODUCTION 
N recent years, the phase-shifted pulse-width-modu- I lated (PS-PWM) converter has found many applications 

due to its distinct characteristics [1]-[4]. This topology 
permits all switching devices to operate under zero-volt- 
age switching (ZVS) by using circuit parasitics such as 
leakage inductance and power FET junction capacitance 
to achieve resonant switching. The ZVS allows operation 
with much reduced switching losses and stresses, and 
eliminates the need for primary snubbers. It enables high 
switching frequency operation for improved power den- 
sity with good cqnversion efficiency. The circuit appears 
similar to a conventional PWM buck topology, but its 
small-signal prqperties are significantly different from 
those of the PWW buck converter’s. This is due to the 
phase-shift operatipn and the presence of a large leakage 
inductance in the p&mary of the transformer. 

In this paper, the small-signal analysis of the PS-PWM 
converter is performed by modeling the effects introduced 
by the phase-shift operation and the use of the transformer 
leakage inductance to resonate with the junction capaci- 
tances of the power FET’s to achieve ZVS. A new small- 
signal model is developed by ’modifying the small-signal 
circuit model of its P W Y  counterpart [6]. The transfer 
functions df the power stage are compared to the corre- 
sponding transfer functions of its PWM counterpart to 
show the significant differences between them. Experi- 
mental results are presented to verify the accuracy of the 
model. 
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11. OPERATION OF THE PS-PWM CONVERTER 
To achieve ZVS, the two legs of the bridge are operated 

with a phase shift. This operation allows a resonant dis- 
charge of the output capacitances of the MOSFET’s, and 
subsequently, forces the conduction of each MOSFET’s 
antiparallel diode prior to the conduction of the MOS- 
FET. Because the operation of the circuit has been de- 
scribed in detail [ l]-[5], only the circuit operation is em- 
phasized, which is significant for development of the 
small-signal model. Fig. 1 shows the converter topology 
and the waveforms for the current Z and voltage VAB in the 
primary and the voltage across the secondary of the power 
transformer V,. In examining these waveforms, it should 
be noted that the leakage inductance Llk does not have to 
be minimized for the proper operation of the converter. 
In fact, the load range at which the converter operates 
with ZVS increases with the leakage inductance. How- 
ever, the large leakage inductance dictates the slope of the 
current when voltage is applied to the primary (t2 or t 6 ) .  

This finite slope reduces the duty cycle of the secondary 
voltage DeK and has a significant impact on the dynamic 
characteristics of the converter. 

The duty cycle of the secondary voltage can be ex- 
pressed as 

where D is the duty cycle of the primary voltage set by 
the control, and A D  is the loss of duty cycle due to the 
finite slope of the rising and falling edges of the primary 
current. Examining Fig. 1, A D  can be expressed as [5] 

Llk 

where n is the transformer turns ratio, n = N s / N p ,  Vi, and 
VOut are input and output voltages, respectively, T, is the 
switching period, Z, is the output filter inductor current, 
and L is the output filter inductance. 
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Fig. 1 .  PS-PWM converter: Scheme and circuit waveforms. 

111. METHOD OF ANALYSIS 
One way of performing the small-signal analysis of the 

PS-PWM converter would be to apply state-space aver- 
aging. Doing this would, however, be a tedious job, be- 
cause it would require solving the third-order system 
composed of six systems of equations (corresponding to 
six topological stages of the converter) whose averaging 
factors are implicit functions of the states. 

The analysis presented in this paper uses the fact that 
the PS-PWM converter is a buck-derived topology. It can 
be seen from the description of the circyit operation that 
the effective duty cycle, de, = Deff + deff, of the trans- 
former secondary voltage depends not only on the duty 
cycle d of the primary voltage but also on the output filter 
inductor current i,, the leakage inductance Llk, the input 
voltage, U,, ,  and the switching frequency f,. This can be 
concluded by examining (3). The small-signal transfer 
functions of this converter, therefore, will depend on L&, 
f,, and the perturbations of the filter inductor current &, 
@put voltage, a,,, and duty cycle of the primary voltage 
d.  

To accurately model the dynamic behavior of this con- 
verter, it is necessary to find out the contributions of L&, 

f,, &, Din, and d to Jeff. These effects can be incorporated 
into the small-signal circuit model of the PWM buck con- 
verter (Fig. 4 )  to obtain the model for the PS-PWM con- 
verter. 

IV. SPECIFIC CIRCUIT EFFECTS 
A. Duty Cycle Modulation Due to the Change of the 
Filter Inductor Current 

Fig. 2 illustrates the effect of duty cycle modulation 
due to the change of the filter inductor current. When the 
steady-state operation (solid lines) is perturbed by an in- 
crease of the filter inductor current by the amount iL,  the 
primary current will follow the dashed line and reach the 
reflected filter inductor current at a later time than it would 
in the steady-state operation. This will cause a reduction 
of the duty cycle of U,. 

The additional delay in increase of the secondary volt- 
age due to iL can be calculated using Fig. 3 as follows: 

(4)  

The change of de, due to this effect, denoted as di, is 

or 

where Rd = 4n2Llkf , .  The negative sign shows that there 
will be a reduction in de, if the filter inductor current is 
increased. This effect is equivalent to a current feedback. 
It will be shown shortly that it will introduce additional 
damping to the system and make the output impedance 
finite at low frequencies. Note that the duty cycle of the 
primary voltage has been kept constant. 

B. Duty Cycle Modulation Due to the Change of the 
Input Voltage 

Fig. 3 illustrates the effect of duty cycle modulation 
due to the change of the input voltage. When the steady- 
state operation (solid lines) is perturbed by an increase of 
the input voltage by the amount Din, the slope of the pri- 
mary current will increase (dashed line) so that it will 
reach the reflected filter inductor current sooner than it 
would in the unperturbed operation. This will cause an 
increase of the duty cycle of U, .  

Examining Fig. 3 ,  the change of de, as a function of 
Din can be calculated as follows: 

where D’ = (1 - D ) .  

Din. (8) 
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. .  . .  ward of input voltage, and it will increase the audio sus- 
ceptability of this converter. Again, there was no change 
in duty cycle of vAE. 

< A t &  . .  

- 

_ _ _ - - -  In order to minimize the conduction losses due to the cir- 
culating currents in the primary of the converter, D' is 
always made as small as possible [5]. Because of this, the 
term containing D' is justifiably neglected when the con- 
verter operates in deep continuous conduction mode. This 

vin .................. 

0 , .  gives the following expression for 8,: 

I 
or 

Fig. 2. Duty cycle modulation due to the change of filter inductor current. 

I I  

V. SMALL-SIGNAL MODEL 
The results of the previous analysis can now be incor- 

porated into the averaged small-signal circuit model of the 
PWM buck converter. This can be done by replacing d in 
the buck converter model (Fig. 4 )  by the total change of 
deff, which is 

Jeff = d + di + d,. (13) 
The Few model is shown in Fig. 5. The contribution of 

di and d, is represented by two controlled sources and the 
contribution of d by tw? independent sources. This is to 
emphasize that ai and d, originate from the circuit itself 
(i.e., perturbations of iL and vi") and are not controlled 
by the control circuit. Close examination of (5) and (10) 
shows that the circuit model of the buck converter is a 
special case of the PS-PWM converter model. This can 
be concluded by making Llk = 0, which gives di = a,, = 
0. Transfer functions of the PS-PWM power stage can 
now be derived using the new model and (6) and (l?. 
For simplicity, the following derivations use (12) for d,. 

VI. SMALL-SIGNAL CHARACTERISTICS OF THE POWER 
STAGE 

In this section expressions for the transfer functions of 
the power stage are given that can be easily incorporated 
into mathematical programs such as MathCAD or cc to 
facilitate the control circuit design. These transfer func- 

Fig. 3 .  Duty cycle modulation due to the change of input voltage. 

Under a small-signal assumption, this becomes: 
tions are compared to the corresponding transfer functions 
of the PWM buck converter having the same circuit ele- 
ments except L&, which is assumed to be equal to zero. 
For simplified notation, the following definitions, refer- 
ring to Fig. 5 ,  are used. 

Ai = n ( z I ,  - 9.. $) 3 Bin. (9) 

The change of de, caused by this effect, denoted as a,,, is 
Transfer function of the output filter is 

1 1 

(14) H = - =  
' - Aj' L 

s 2 L C + s - + 1  
R 
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Fig. 4. Small-signal circuit model of the buck converter. 
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Fig. 5 .  Small-signal circuit model of the PS-PWM converter. 

Input impedance of the output filter is 
RA< 

Output impedance of the output filter is 
SL 

2, = -. 
Af 

The circuit parameter values used to plot the transfer 
functions are 

Input voltage, Vi, 
Output voltage, V,,, 
Transformer turns ratio, n 
Transformer leakage inductance, 
Switching frequency, fs 
Output filter inductor, L 
Output flter capacitor, C 
Load resistor, R 

A .  Control-to-Output Transfer Function 
The control-to-output transfer function is 

Zf G,,d = H , n V i n  ___ 
Zf + Rd‘ 

600 V 
360 V 
1 
52 pH 
100 kHz 
315 pH 
5 PF 
70 fl 

Fig. 6 shows the control-to-output transfer functions of 
the PWM buck converter (dashed lines) and of the PS- 
PWM converter (solid lines). The differences between the 
transfer functions in dc gain and resonant peaking are ap- 
parent. 

To gain insight on how the transformer leakage influ- 
ences the power stage transfer function, the expressions 
for Zf and H, can be substituted into (17): 

Frequency (kHz) 

Frequency (kHz) 
0 

Fig. 6.  Control-to-output voltage transfer functions of the buck (dashed 
lines) and of the PS-PWM converters (solid lines). 

It can be observed from this equation that the “built-in” 
current feedback decreases the low frequency value of 
God. This is caused by the presence of the term Rd/R .  In 
practice, the value of this term ranges from 0 to around 
0.5, with a typical value of 0.25. The upper boundary of 
this interval is determined by the loss of steady-state duty 
cycle (3), which, in practice, must be kept below a rea- 
sonable value [6]. For the purpose of further qualitative 
analysis, it can be assumed that ( R d / R )  + 1 = 1. After 
the numerator and denominator are multiplied by 1/LC 
= U: we obtain: 

where is the damping of the second-order denominator: 

r- r 

The first term of 4 is the damping in the regular buck 
converter. The use of leakage inductance introduces ad- 
ditional damping, and the second term of can become 
dominant. Fig. 7 shows the family of control-to-output 
transfer functions of the PS-PWM power stage as the ratio 
R d / R  varies from 0 to 0.5. The damping of the system is 
noticeably affected even for very small values of Rd/R .  
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Frequency (kHz) 
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Fig. 7 .  Control-to-output transfer functions for different values of R d / R .  

B. Control-to-Filter Inductor Current Transfer Function 
The control-to-filter inductor current transfer function 

is 

Fig. 8 shows the control-to-filter inductor current trans- 
fer functions of the PWM buck converter (dashed lines) 
and of the PS-PWM converter (solid lines). The control- 
to-filter inductor current transfer function is altered in the 
same way as the control-to-output transfer function. 

C. Output Impedance 
The output impedance of the PS-PWM power stage is 

(23) 
H :  2, = 2, + ~ 

1 1 '  - + -  zf Rd 

Fig. 9 shows the output impedances of the PWM buck 
converter (dashed lines) and of the PS-PWM converter 
(solid lines). It can be observed that the output impedance 
of the PS-PWM converter is not attenuated at low fre- 
quencies. Such behavior is expected knowing that the loss 
of duty cycle (3) is a function of output current, i.e., the 
dc output voltage is a function of the dc load current. 

D. Audio Susceptibility 
The audio susceptibility of the PS-PWM power stage is 

I I I 

I 1 I 

1 IO 100 
%!I Frequency (kHz) 

Fig. 8.  Control-to-filter inductor current transfer functions of the buck 
(dashed lines) and PS-PWM converters (solid lines). 
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Fig. 9. Output impedances of the buck (dashed lines) and PS-PWM con- 
verters (solid lines). 

Fig. 10 shows the audio susceptibilities of the PWM 
buck converter (dashed lines) and the PS-PWM converter 
(solid lines). By examining (12) one could expect the au- 
dio susceptibility of the PS-PWM converter power stage 
to be higher than the audio susceptibility of the buck con- 
verter. Fig. 10, however, shows that this is the case only 
at higher frequencies. The explanation can be found by 
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Fig. 10. Audio susceptibilities of the buck (dashed lines), and PS-PWM 
converters (solid lines). 

Fig. 1 1 .  Input impedance of the buck (dashed lines) and PS-PWM con- 
verters (solid lines). 

40 

30 

h 20 

examining (24). The second term inside the brackets does 
not exist in the PWM buck converter, and it is introduced 
by the use of Llk. At low frequencies, Zf = R, and the 
second term is equal to zero. This leads to the conclusjon 8 10 
low frequencies. '9 O 

U that the effect of (2, is neutralized by the influence of d, at 

2 -10 

E. Input Impedance -20 

The input impedance of the PS-PWM power stage is 

(25) 
+ Rd z. = 

In n*D;ff (1 + 

Fig. 11 shows the input impedances of the PWM buck 
converter (dashed lines) and the PS-PWM converter (solid 
lines). As discussed in Section VI-D, the modulation of 
duty cycle due to the variation of input voltage affects the 
input impedance only at high frequencies. 

V I I .  EXPERIMENTAL VERIFICATION 
To verify the results of the analysis, a converter was 

built with the same component values as shown in Section 
VI. The only difference is that in order to achieve better 
measurement accuracy, the input voltage, the output volt- 
age, and the load resistance have been reduced to 50 V, 
20 V, and, 50 Q, respectively. 

The control-to-output transfer function is shown in Fig. 
12. Both the gain and phase measurements agree very well 
with predictions. Fig. 13 shows the control-to-filter in- 

I I I 
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1 10 100 
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-218.'1 

Fig. 12. Control-to-output voltage transfer function of the PS-PWM con- 
verter. Model prediction (dashed lines) and experimental measurement 
(solid lines). 

ductor current transfer function. The agreement between 
prediction and measurement is again very good. Fig. 14 
shows the output impedance of the converter. The mea- 
surement clearly shows the first order response and loss 
of resonant peaking, predicted by analysis. 
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Frequency (kHz) 

output filter, the reduction of the low-frequency magni- 
tudes of the control-to-output and control-to-filter induc- 
tor current transfer functions, and the transformation of 
the output impedance nature from inductive to resistive at 
low frequencies. 

The analytical closed-form expressions for the transfer 
functions of the PS-PWM power stage have been derived. 
The new model can easily be incorporated into any circuit 
simulation programs such as SPICE, or into mathematical 
application program such as CC. The predictions of the 
new model have been verified by measurements. 

I I I 
1 10 100 

Frequency (kHz) 

Fig. 13. Control-to-filter inductor current transfer function of the PS-PWM 
converter. Prediction (dashed lines) and measurement (solid lines). 
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Fig. 14. Output impedance of the PS-PWM converter. Model prediction 
(dashed lines) and experimental measurement (solid lines). 

VIII. CONCLUSIONS 
The phase-shift operation and the use of the large leak- 

age inductance to achieve ZVS have a significant impact 
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