Snubber Circuits

A. Overview of Snubber Circuits
B. Diode Snubbers
C. Turn-off Snubbers
D. Overvoltage Snubbers
E. Turn-on Snubbers
F. Thyristor Snubbers

William P. Robbins
Professor
Dept. of Electrical Engineering
University of Minnesota
200 Union St. SE.
Minneapolis, MN 555455

Copyright 1997

Function of Snubber Circuits

- Protect semiconductor devices by:
- Limiting device voltages during turn-off transients
- Limiting device currents during turn-on transients
- Limiting the rate-of-rise ($\frac{d i}{d t}$) of currents through the semiconductor device at device turn-on
- Limiting the rate-of-rise ($\frac{d v}{d t}$) of voltages across the semiconductor device at device turn-off
- \quad Shaping the switching trajectory of the device as it turns on/ off

Types of Snubber Circuits

1. Unpolarized series R-C snubbers

- Used to protect diodes and thyristors

2. Polarized $\mathrm{R}-\mathrm{C}$ snubbers

- Used as turn-off snubbers to shape the turn-on switching trajectory of controlled switches.
- Used as overvoltage snubbers to clamp voltages applied to controlled switches to safe values.
- Limit $\frac{d v}{d t}$ during device turn-off

3. Polarized L-R snubbers

- Used as turn-on snubbers to shapte the turn-off switching trajectory of controlled switches.
- Limit $\frac{\mathrm{di}}{\mathrm{dt}}$ during device turn-on

Need for Diode Snubber Circuit

- $\mathrm{L}_{\sigma}=$ stray inductance
- S_{w} closes at $\mathrm{t}=0$
- $\mathrm{R}_{\mathrm{S}}-\mathrm{C}_{\mathrm{S}}=$ snubber circuit

- Diode breakdown if $V_{d}+L_{\sigma} \frac{d i_{L \sigma}}{d t}>B V_{B D}$

Equivalent Circuits for Diode Snubber

- Worst case assumption- diode snaps off instantaneously at end of diode recovery
- Simplified snubber - the capacitive snubber

- $R_{S}=0$
- $v_{C s}=-v_{D f}$
- Governing equation $-\frac{d^{2} v_{C s}}{d t^{2}}+\frac{v_{C s}}{L_{\sigma} C_{s}}=\frac{v_{d}}{L_{\sigma} C_{s}}$
- Boundary conditions - $\mathrm{v}_{\mathrm{Cs}}\left(0^{+}\right)=0$ and $\mathrm{i}_{\mathrm{L} \sigma\left(0^{+}\right)=\mathrm{I}_{\mathrm{rr}} .}$

Performance of Capacitive Snubber

- $\quad v_{C s}(t)=v_{d}-v_{d} \cos \left(\omega_{o} t\right)+v_{d} \sqrt{\frac{C_{\text {base }}}{C_{s}}} \sin \left(\omega_{o} t\right)$
- $\quad \omega_{o}=\frac{1}{\sqrt{L_{\sigma} C_{s}}} \quad ; \quad C_{\text {base }}=L_{\sigma}\left[\frac{I_{r r}}{V_{d}}\right]^{2}$
- $\mathrm{v}_{\mathrm{cs}, \max }=\mathrm{v}_{\mathrm{d}}\left\{1+\sqrt{1+\frac{\mathrm{C}_{\text {base }}}{\mathrm{C}_{\mathrm{s}}}}\right\}$

Snubbers - 6
W.P. Robbins © 1997

Effect of Adding Snubber Resistance

- Equivalent circuit with snubber resistance R_{S}

- Governing equation $L_{\sigma} C_{s} \frac{d^{2} v_{D f}}{d t^{2}}+R_{s} C_{s} \frac{d v_{D f}}{d t}+v_{D f}=-v_{d}$
- Boundary conditions

$$
v_{D f}\left(0^{+}\right)=-I_{r r} R_{s} \quad \text { and } \quad \frac{d v_{D f}\left(0^{+}\right)}{d t}=-\frac{I_{r r}}{C_{s}}-\frac{R_{s} V_{d}}{L_{\sigma}}+\frac{I_{r r} R_{s}{ }^{2}}{L_{\sigma}}
$$

- \quad Solution for $\mathrm{v}_{\mathrm{Df}}(\mathrm{t})$

$$
\begin{aligned}
& v_{D f}(t)=-v_{d}-v_{d} e^{-\alpha t} \sqrt{\frac{C_{b a s e}}{C_{s}}} \sin \left(\omega_{a} t-\phi-\xi\right) \\
& \omega_{a}=\omega_{0} \sqrt{1-\frac{\alpha^{2}}{\omega_{o}^{2}}} ; \omega_{o}=\frac{1}{\sqrt{L_{\sigma} C_{s}}} ; \alpha=\frac{R_{s}}{2 L_{\sigma}} \\
& \tan (\phi)=-\frac{R_{b}}{\omega_{a} L_{\sigma}}-\frac{\alpha}{\omega_{a}} ; \tan (\xi)=\frac{\alpha}{\omega_{a}} ; R_{b a s e}=\frac{v_{d}}{I_{r r}}, C_{b a s e}=\frac{L_{\sigma}}{\left(V_{d} / I_{r r}\right)^{2}}
\end{aligned}
$$

Performance of R-C Snubber

- At $t=t_{m} \quad v_{D f}(t)=V_{\text {max }}$

$$
\begin{aligned}
& \text { - } \mathrm{t}_{\mathrm{m}}=\frac{\tan ^{-1}\left(\omega_{\mathrm{a}} / \alpha\right)}{\omega_{\mathrm{a}}}+\frac{\phi-\xi}{\omega_{\mathrm{a}}} \geq 0 \\
& \text { - } \frac{V_{\text {max }}}{V_{d}}=1+\sqrt{1+C_{N}^{-1}-R_{N}} \exp \left(-\alpha t_{m}\right) \\
& \text { - } \mathrm{C}_{\mathrm{N}}=\frac{\mathrm{C}_{\mathrm{S}}}{\mathrm{C}_{\text {base }}} \quad \text { and } \quad \mathrm{R}_{\mathrm{N}}=\frac{\mathrm{R}_{\mathrm{S}}}{\mathrm{R}_{\text {base }}} \\
& \text { - } \mathrm{C}_{\text {base }}=\frac{\mathrm{L}_{\mathrm{s}} \mathrm{I}_{\mathrm{rr}}{ }^{2}}{\mathrm{~V}_{\mathrm{d}}{ }^{2}} \text { and } \quad \mathrm{R}_{\text {base }}=\frac{\mathrm{V}_{\mathrm{d}}}{\mathrm{I}_{\mathrm{rr}}}
\end{aligned}
$$

Snubbers - 8
W.P. Robbins © 1997

Diode Snubber Design Nomogram

Snubbers - 9
W.P. Robbins © 1997

Turn-on Snubber for Controlled Switches

- Circuit configuration

- Equivalent circuit during switch turn-off

- Assumptions

1. No stray inductance.
2. $i_{s w}(t)=I_{o}\left(1-t / t_{f i}\right)$
3. $\mathrm{i}_{\mathrm{sw}}(\mathrm{t})$ uneffected by snubber circuit.

Turn-off Snubber Operation

- Capacitor voltage and current for $0<t<t_{f i}$
- $\mathrm{i}_{\mathrm{Cs}}(\mathrm{t})=\frac{\mathrm{I}_{\mathrm{o}} \mathrm{t}}{\mathrm{t}_{\mathrm{fi}}}$ and $\mathrm{v}_{\mathrm{Cs}}(\mathrm{t})=\frac{\mathrm{I}_{\mathrm{o}} \mathrm{t}^{2}}{2 \mathrm{C}_{\mathrm{s}} \mathrm{t}_{\mathrm{fi}}}$
- For $\mathrm{C}_{\mathrm{s}}=\mathrm{C}_{\mathrm{s} 1}, \mathrm{v}_{\mathrm{Cs}}=\mathrm{V}_{\mathrm{d}}$ at $\mathrm{t}=\mathrm{t}_{\mathrm{fi}}$ yielding $\mathrm{C}_{\mathrm{s} 1}=\frac{\mathrm{I}_{\mathrm{o}} \mathrm{t}_{\mathrm{fi}}}{2 \mathrm{~V}_{\mathrm{d}}}$
- Circuit waveforms for varying values of C_{S}

Benefits of Snubber Resistance at $\mathbf{S}_{\mathbf{w}}$ Turn-on

- Turn-on with $\mathrm{R}_{\mathrm{S}}>0$
- Energy stored on C_{S} dissipated in R_{S} rather than in S_{w}.
- Voltage fall time kept quite short.

Effect of Snubber Capacitance

- Switching trajectory

- Energy dissipation

$$
\begin{aligned}
& \mathrm{W}_{\mathrm{R}}=\underset{\text { resistor }}{\text { dissipation in }} \\
& \mathrm{W}_{\mathrm{T}}=\underset{\text { dissipation in }}{\text { switch } \mathrm{S}_{\mathrm{W}}} \\
& \mathrm{C}_{\mathrm{s} 1}=\frac{\mathrm{I}_{\mathrm{o}} \mathrm{t}_{\mathrm{fi}}}{2 \mathrm{~V}_{\mathrm{d}}} \\
& \mathrm{~W}_{\text {total }}=\mathrm{W}_{\mathrm{R}}+\mathrm{W}_{\mathrm{T}} \\
& \mathrm{~W}_{\text {base }}=0.5 \mathrm{~V}_{\mathrm{d}} \mathrm{l}_{\mathrm{o}} \mathrm{t}_{\mathrm{fi}}
\end{aligned}
$$

Turn-off Snubber Design Procedure

- Selection of C_{S}
- Minimize energy dissipation (W_{T}) in BJ T at turn-on
- Minimize $\mathrm{W}_{\mathrm{R}}+\mathrm{W}_{\mathrm{T}}$
- Keep switching locus within RBSOA
- Reasonable value is $\mathrm{C}_{\mathrm{S}}=\mathrm{C}_{\mathrm{S} 1}$
- Selection of R_{S}
- Limit $\mathrm{i}_{\text {cap }}\left(0^{+}\right)=\frac{\mathrm{V}_{\mathrm{d}}}{\mathrm{R}_{\mathrm{s}}}<\mathrm{I}_{\mathrm{rr}}$
- Usually designer specifies $I_{r r}<0.2 I_{0}$ so

$$
\frac{\mathrm{V}_{\mathrm{d}}}{\mathrm{R}_{\mathrm{s}}}=0.2 \mathrm{I}_{\mathrm{o}}
$$

- Snubber recovery time (BJT in on-state)
- Capacitor voltage $=\mathrm{V}_{\mathrm{d}} \exp \left(-\mathrm{t} / \mathrm{R}_{\mathrm{S}} \mathrm{C}_{\mathrm{S}}\right)$
- Time for v_{Cs} to drop to $0.1 \mathrm{~V}_{\mathrm{d}}$ is $2.3 \mathrm{R}_{\mathrm{S}} \mathrm{C}_{\mathrm{s}}$
- BJT must remain on for a time of $2.3 \mathrm{R}_{\mathrm{S}} \mathrm{C}_{\mathrm{S}}$

Overvoltage Snubber for Controlled Switches

- Circuit configuration - $\mathrm{D}_{\mathrm{ov}}, \mathrm{R}_{\mathrm{ov}}$, and C_{ov} form overvoltage snubber

- Overvoltage snubber limits magnitude of voltage developed across S_{w} as it turns off.
- Switch S_{w} waveforms without overvoltage snubber
- $\quad \mathrm{t}_{\mathrm{fi}}=$ switch current fall time ; $\mathrm{kV} \mathrm{d}_{\mathrm{d}}=$ overvoltage on S_{w}

- $\mathrm{kV}_{\mathrm{d}}=\mathrm{L}_{\sigma} \frac{\mathrm{di}}{\mathrm{dt}}{ }_{\mathrm{dt}}=\mathrm{L}_{\sigma \mathrm{I}_{\mathrm{fi}}}$
- $L_{\sigma}=\frac{k V_{d}{ }^{t} f i}{I_{o}}$

Operation of Overvoltage Snubber

- $\quad D_{o v}, C_{o v}$ provide alternate path for inductor current as S_{w} turns off.
- Switch current can fall to zero much faster than L_{σ} current.
- $\quad D_{f}$ forced to be on (approximating a short ckt) by I_{o} after S_{w} is off.
- Equivalent circuit after turn-off of S_{w}.

Overvoltage Snubber Design

- $C_{o v}=\frac{L_{s} I_{o}{ }^{2}}{\left(\Delta v_{s w, \text { max }}\right)^{2}}$
- Limit $\Delta \mathrm{V}_{\mathrm{SW}, \max }$ to $0.1 \mathrm{~V}_{\mathrm{d}}$
- Using $L_{s}=\frac{k V_{d} t_{f i}}{I_{o}}$ in equation for $C_{o v}$ yields
- $C_{o v}=\frac{k V_{d} t_{f i} l_{o}^{2}}{I_{o}\left(0.1 V_{d}\right)^{2}}=\frac{100 \mathrm{k}_{\mathrm{fi}} \mathrm{I}_{\mathrm{o}}}{\mathrm{V}_{\mathrm{d}}{ }^{2}}$
- $\mathrm{C}_{\mathrm{ov}}=200 \mathrm{C}_{\mathrm{s} 1}$ where $\mathrm{C}_{\mathrm{s} 1}=\frac{\mathrm{t}_{\mathrm{fi}} \mathrm{l}_{\mathrm{o}}}{2 \mathrm{~V}_{\mathrm{d}}}$ which is used in turn-off snubber
- Recovery time of $\mathrm{C}_{\mathrm{ov}}\left(2.3 \mathrm{R}_{\mathrm{ov}} \mathrm{C}_{\mathrm{ov}}\right)$ must be less than off-time duration, $\mathrm{t}_{\text {off }}$, of the switch Sw .
- $\mathrm{R}_{\mathrm{ov}} \approx \frac{\mathrm{t}_{\mathrm{off}}}{2.3 \mathrm{C}_{\mathrm{ov}}}$

Turn-on Snubber Circuit

- Circuit topology

- Circuit reduces $V_{S w}$ as switch S_{w} turns on. Voltage drop $L_{s} \frac{\mathrm{di}_{s w}}{d t}$ provides the voltage reduction.
- Switching trajectories with and without turn-on snubber.

Turn-on Snubber Operating Waveforms

- \quad Small values of snubber inductance $\left(\mathrm{L}_{\mathrm{s}}<\mathrm{L}_{\mathrm{s} 1}\right)$

- $\frac{\mathrm{di}_{\mathrm{Sw}}}{\mathrm{dt}}$ controlled by switch S_{w} and drive circuit.
- $\Delta \mathrm{v}_{\mathrm{sw}}=\frac{\mathrm{L}_{\mathrm{s}} \mathrm{I}_{\mathrm{o}}}{\mathrm{t}_{\mathrm{ri}}}$
- Large values of snubber inductance $\left(\mathrm{L}_{\mathrm{s}}>\mathrm{L}_{\mathrm{s} 1}\right)$.

- $\frac{\mathrm{di}_{\mathrm{SW}}}{\mathrm{dt}}$ limited by circuit to $\frac{V_{d}}{L_{s}}<\frac{I_{o}}{t_{r i}}$
- $L_{s 1}=\frac{V_{d} t_{r i}}{I_{0}}$
- $\quad I_{r r}$ reduced when $L_{s}>L_{s 1}$ because $I_{r r}$ proportional to $\sqrt{\frac{d i_{s w}}{d t}}$

Turn-on Snubber Recovery at Switch Turn-off

- Overvoltage smaller if t_{fi} smaller.
- Time of $2.3 \mathrm{~L}_{\mathrm{s}} / \mathrm{R}_{\mathrm{Ls}}$ required for inductor current to decay to $0.1 \mathrm{I}_{\mathrm{o}}$
- Off-time of switch must be $>2.3 \mathrm{~L}_{\mathrm{s}} / \mathrm{R}_{\mathrm{Ls}}$

Turn-on Snubber Design Trade-offs

- Selection of inductor L_{S}
- Larger L_{S} decreases energy dissipation in switch at turn-on
- $\quad W_{S W}=W_{B}\left(1+I_{r r} / I_{o}\right)^{2}\left[1-L_{s} / L_{s 1}\right]$
- $W_{B}=V_{d} l_{o} t_{f i} / 2$ and $L_{s 1}=V_{d} t_{f i} / I_{o}$
- $\quad \mathrm{L}_{\mathrm{s}}>\mathrm{L}_{\mathrm{s} 1} \quad \mathrm{~W}_{\mathrm{SW}}=0$
- Larger L_{s} increases energy dissipation in $R_{L s}$
- $\quad W_{R}=W_{B} L_{s} / L_{s 1}$
- $\mathrm{L}_{\mathrm{s}}>\mathrm{L}_{\mathrm{s} 1}$ reduces magnitude of reverse recovery current I_{rr}
- Inductor must carry current I_{0} when switch is on - makes inductor expensive and hence turn-on snubber seldom used
- \quad Selection of resistor R_{Ls}
- Smaller values of $R_{L s}$ reduce switch overvoltage $I_{o} R_{L s}$ at turn-off
- Limiting overvoltage to $0.1 \mathrm{~V}_{\mathrm{d}}$ yields $\mathrm{R}_{\mathrm{Ls}}=0.1 \mathrm{~V}_{\mathrm{d}} / \mathrm{I}_{\mathrm{o}}$
- Larger values of $R_{\text {Ls }}$ shortens minimum switch off-time of $2.3 \mathrm{~L}_{\mathrm{s}} / \mathrm{R}_{\mathrm{Ls}}$

Thyristor Snubber Circuit

- $\mathrm{v}_{\mathrm{an}}(\mathrm{t})=\mathrm{V}_{\mathrm{s}} \sin (\omega \mathrm{t}), \mathrm{v}_{\mathrm{bn}}(\mathrm{t})=\mathrm{V}_{\mathrm{S}} \sin \left(\omega \mathrm{t}-120^{\circ}\right), \mathrm{v}_{\mathrm{Cn}}(\mathrm{t})=\mathrm{V}_{\mathrm{S}} \sin \left(\omega \mathrm{t}-240^{\circ}\right)$
- Phase-to-neutral waveforms

- $\mathrm{v}_{\mathrm{LL}}(\mathrm{t})=\sqrt{3} \mathrm{~V}_{\mathrm{S}} \sin \left(\omega \mathrm{t}-60^{\circ}\right)$
- Maximum rms line-to-line voltage $V_{L L}=\sqrt{\frac{3}{2}} V_{S}$

Equivalent Circuit for SCR Snubber Calculations

- Equivalent circuit after T1 reverse recovery

- Assumptions
- Trigger angle $\alpha=90^{\circ}$ so that $\mathrm{v}_{\mathrm{LL}}(\mathrm{t})=$ maximum $=\sqrt{2} \mathrm{~V}_{\mathrm{LL}}$
- Reverse recovery time $t_{r r} \ll$ period of ac waveform so that $v_{L L}(t)$ equals a constant value of $v_{b c}\left(\omega t_{1}\right)=\sqrt{2} V_{L L}$
- Worst case stray inductance L_{σ} gives rise to reactance equal to or less than 5% of line impedance.
- Line impedance $=\frac{\mathrm{V}_{\mathrm{S}}}{\sqrt{2} \mathrm{I}_{\mathrm{al}}}=\frac{\sqrt{2} \mathrm{~V}_{\mathrm{LL}}}{\sqrt{6} \mathrm{I}_{\mathrm{al}}}=\frac{\mathrm{V}_{\mathrm{LL}}}{\sqrt{3} \mathrm{I}_{\mathrm{al}}}$ where $I_{a 1}=r m s$ value of fundamental component of the line current.
- $\quad \omega \mathrm{L}_{\sigma}=0.05 \frac{\mathrm{~V}_{\mathrm{LL}}}{\sqrt{3} \mathrm{I}_{\mathrm{al}}}$

Component Values for Thyristor Snubber

- Use same design as for diode snubber but adapt the formulas to the thyristor circuit notation
- Snubber capacitor $C_{s}=C_{\text {base }}=L_{\sigma}\left[\frac{I_{r r}}{V_{d}}\right]^{2}$
- From snubber equivalent circuit $2 \mathrm{~L}_{\sigma} \frac{\mathrm{di}_{\mathrm{L} \sigma}}{\mathrm{dt}}=\sqrt{2} \mathrm{~V}_{\mathrm{LL}}$
- $\mathrm{I}_{r r}=\frac{d i_{\mathrm{L} \sigma}}{d t} t_{r r}=\frac{\sqrt{2} \mathrm{~V}_{\mathrm{LL}}}{2 \mathrm{~L}_{\sigma}} \mathrm{t}_{r r}=\frac{\sqrt{2} \mathrm{~V}_{\mathrm{LL}}}{2 \frac{0.05 \mathrm{~V}_{\mathrm{LL}}}{\sqrt{3} \mathrm{I}_{\mathrm{al}} \omega}} \mathrm{t}_{r r}=25 \omega \mathrm{l}_{\mathrm{al}} \mathrm{t}_{r r}$
- $\quad \mathrm{V}_{\mathrm{d}}=\sqrt{2} \mathrm{~V}_{\mathrm{LL}}$
- $\mathrm{C}_{\mathrm{s}}=\mathrm{C}_{\text {base }}=\frac{0.05 \mathrm{~V}_{\mathrm{LL}}}{\sqrt{3} \mathrm{I}_{\mathrm{a} 1} \omega}\left[\frac{25 \omega \mathrm{l}_{\mathrm{a} 1} \mathrm{t}_{\mathrm{rr}}}{\sqrt{2} \mathrm{~V}_{\mathrm{LL}}}\right]^{2}=\frac{8.7 \omega \mathrm{l}_{\mathrm{a} 1} \mathrm{t}_{\mathrm{rr}}}{\mathrm{V}_{\mathrm{LL}}}$
- Snubber resistance $R_{S}=1.3 \mathrm{R}_{\text {base }}=1.3 \frac{\mathrm{~V}_{\mathrm{d}}}{\mathrm{I}_{\mathrm{rr}}}$

$$
\text { - } \mathrm{R}_{\mathrm{S}}=1.3 \frac{\sqrt{2} \mathrm{~V}_{\mathrm{LL}}}{25 \omega \mathrm{al}^{\mathrm{t}_{\mathrm{rr}}}}=\frac{0.07 \mathrm{~V}_{\mathrm{LL}}}{\omega \mathrm{al}^{\mathrm{t}} \mathrm{rr}}
$$

- Energy dissipated per cycle in snubber resistance $=W_{R}$

$$
\mathrm{W}_{\mathrm{R}}=\frac{\mathrm{L}_{\sigma} \mathrm{I}_{\mathrm{rr}}^{2}}{2}+\frac{\mathrm{C}_{\mathrm{s}} \mathrm{~V}_{\mathrm{d}}^{2}}{2}=18 \omega \mathrm{I}_{\mathrm{al}} \mathrm{~V}_{\mathrm{LL}}\left(\mathrm{t}_{\mathrm{rr}}\right)^{2}
$$

