Topic 3

Designing an LLC Resonant Half-Bridge Power Converter

Hong Huang
Agenda

1. Introduction
 – Brief review
 – Advantages

2. Design Prerequisites
 – Configuration
 – Operation
 – Modeling
 – Voltage gain function

3. Design Considerations
 – Voltage gain and switching frequency
 – Line and load regulation
 – Zero voltage switching (ZVS)
 – Steps for designing and a design example

4. Conclusions
Introduction

• Brief review of resonant converters
 – Series resonant converter (SRC)
 – Parallel resonant converter (PRC)

• Single resonant frequency
• Circuit frequency increases with lighter load

• Resonant point changes with load
• Large amount of circulating current
Introduction

• Brief review of resonant converters
 – Combination of SRC and PRC → LCC
 • Two resonant frequencies
 • Requires three elements
 – LLC: alternative LCC
 • L_r and L_m integrated in a transformer

• Advantages of LLC
 – High efficiency (ZVS)
 – Less frequency variation and lower circulating current
 – ZVS over operating range
Design Prerequisites

- **Configuration**
 - Variable-frequency square-wave generator
 - Divider formed by resonant network and R_L
 - Rectifier to get DC output
 - Changing frequency varies voltage across R_L
 - Frequency-modulated converter instead of PWM
Design Prerequisites

- Operation
 - f_{sw} switching frequency
 - f_0 series resonant frequency (C_r and L_r)
 - f_{co} circuit resonant frequency (C_r, L_r, and L_m, together R_L)

\[
\begin{align*}
&f_{sw} = f_0 \\
&f_{sw} < f_0 \\
&f_{sw} > f_0
\end{align*}
\]
Design Prerequisites

• Modeling
 – First harmonic approximation (FHA)

\[\begin{align*}
\text{Input and output: Square wave voltages} \\
\text{Sinusoidal current in resonant circuit}
\end{align*} \]

\[\begin{align*}
\text{Input and output: Fundamental components to approximate FHA} \\
\text{Rectifier and } R_L \text{ equivalent to } R_e \\
\text{AC circuit method can be used}
\end{align*} \]
Design Prerequisites

- Voltage gain function
 - Expression from impedance divider

\[
M_{g_DC} = \frac{n \times V_o}{V_{in}/2} \approx M_{g_sw} = \frac{V_{so}}{V_{sq}} \approx M_{g_ac} = \frac{V_{oe}}{V_{ge}}
\]

\[
M_{g_DC} = \frac{n \times V_o}{V_{in}/2} \approx \frac{V_{oe}}{V_{ge}}
\]

\[
= \frac{(j\omega L_m) || R_e}{(j\omega L_m) || R_e + j\omega L + \frac{1}{j\omega C_r}}
\]

where \(\omega = 2\pi f = 2\pi f_{sw} \) and \(j = \sqrt{-1} \)
Design Prerequisites

- Voltage gain function
 - Expression (Normalization)

\[M_{g_DC} = \frac{n \times V_o}{V_{in}/2} \approx M_{g_sw} = \frac{V_{so}}{V_{sq}} \approx M_{g_ac} = \frac{V_{oe}}{V_{ge}} \]

\[M_g = \frac{L_n \times f_n^2}{[(L_n + 1) \times f_n^2 - 1] + j[(f_n^2 - 1) \times f_n \times Q_e \times L_n]} \]

<table>
<thead>
<tr>
<th>Normalized Gain</th>
<th>Resonant Frequency</th>
<th>Quality Factor</th>
<th>Normalized Frequency</th>
<th>Inductor Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>(M_g = \frac{V_o}{V_{in}/2})</td>
<td>(f_0 = \frac{1}{2\pi \sqrt{L_r C_r}})</td>
<td>(Q_e = \frac{\sqrt{L_r/C_r}}{R_e})</td>
<td>(f_n = \frac{f_{sw}}{f_0})</td>
<td>(L_n = \frac{L_m}{L_r})</td>
</tr>
</tbody>
</table>

Eq. Load R.

\[R_e = \frac{8 \times n^2}{\pi^2} \times R_L \]
Design Prerequisites

- Voltage gain function
 - Plots of gain magnitude, fixed $L_n = 5$
 - Q_e (load current) increases \Rightarrow peak gain decreases \Rightarrow curves shrink

![Graph showing voltage gain function with different Q_e values.](image-url)
Design Prerequisites

- Voltage gain function
 - Plots of gain magnitude, fixed $Q_e = 0.5$
 - L_n decreases \Rightarrow peak gain increases \Rightarrow ZVS obtained but conduction losses increase

![Graph showing gain vs. normalized frequency for different L_n values.](image)

- For $L_n = 3$, 5, 10, the gain decreases as the normalized frequency increases.
Design Considerations

• Where to base a design?
 – In the vicinity of series resonance, \(f_n = 1 \Rightarrow \) narrowest frequency variation
 \(\Rightarrow M_g \text{ able to } = 1, >1, \text{ and } <1 \)
 – Right side of the resonant peak \(\Rightarrow \) ZVS requirement
Design Considerations

• Line and load regulation
 – Properly set up $M_{g_{\text{max}}}$ and $M_{g_{\text{min}}}$
 – Frequency limit set up

\[
M_{g_{\text{max}}} = \frac{n \times V_{o_{\text{max}}}}{V_{\text{in}_{\text{min}}}/2}
\]

\[
M_{g_{\text{min}}} = \frac{n \times V_{o_{\text{min}}}}{V_{\text{in}_{\text{max}}}/2}
\]
Design Considerations

• Overload current operation
 – $Q_e = \text{max}$ to include and meet the required $M_{g_{\text{max}}}$
 – Operation still on the right side of resonant peak

![Diagram showing normalized frequency and gain with overload current operation considerations.](image-url)
Design Considerations

• Load short circuit
• Protection options
 – Increase f_{sw} rapidly to reduce M_g to zero
 – Operation with $f_n > 1$, i.e., $f_{sw} > f_0$ at all times
 – Independent protection function
Design Considerations

• Zero voltage switching (ZVS)
 – How ZVS is achieved?
Design Considerations

• Zero voltage switching (ZVS)

 – **Necessary** condition

 • Input impedance of the resonant network → **inductive**

 • Operation on the right side of the resonant peak

 – **Sufficient** condition

 • Enough energy stored in the magnetic field, mainly L_m

 • Enough time to discharge the capacitors, mainly C_{DS}
Design Considerations

• Why not design on the left side of the resonant peak?
 – Capacitive current results
 – ZVS lost
 → Hard switching
 → Switching losses increase
 – Body diode reverse recovery losses
 → Primary MOSFET failure
 – Higher EMI noise
 – Reversed frequency relationship to feedback loop
Design Considerations

- Design Steps – How to initially select?
 - f_{sw}, switching frequency
 - n, transformer turns ratio
 - L_n, inductance ratio
 - Q_e, series resonant quality factor
Design Considerations

• Design Steps – Switching frequency
 – Usually selected for particular applications
 • Example in off-line applications: Typical below 150 kHz
 – Selecting the switching frequency
 • f decrease ⇒ Bulkier converter
 • f decrease ⇒ Switching losses decrease ⇒ ZVS benefit decrease
 • f increase ⇒ ZVS benefits increase vs. hard switching converters
 • Very High f:
 – Component availability
 – Additional switching losses
 – Additional concerns due to parasitic effects
Design Considerations

• Design Steps – Transformer turns ratio, \(n \)

 – Voltage gain can be larger and smaller than unity

 – Flexibility in selecting the turns ratio, \(n \)

 – Turns ratio design with \(M_g = 1 \), initially, and nominal \(V_{in} \) and \(V_o \)

\[
n = M_g \times \frac{V_{in}/2}{V_o} = \frac{V_{in_nom}/2}{V_{o_nom}} \quad | \quad M_g = 1
\]
Design Considerations

- **Design Steps – \(L_n \) and \(Q_e \)**
 - \(L_n \) and \(Q_e \) to achieve \(M_{g_{pk}} > M_{g_{max}} \) for maximum load
 - Select \(L_n \) and \(Q_e \) from pre-plotted peak gain curves
 - Initial selection
 - \(L_n = 5 \)
 - \(Q_e = 0.5 \)
 - Example: Select \(L_n \) and \(Q_e \) for \(M_{g_{max}} = 1.2 \)
 - To achieve design margin – Final selection
 - \(L_n = 3.5, Q_e = 0.45 \)
 - 30% margin over
Design Considerations

- Design Steps – Trade-offs to select L_n and Q_e
 - Different requirements for different applications
 - Fixed Q_e, L_n decrease \Rightarrow peak gain increase \Rightarrow good for ZVS and avoids capacitive current
 - But, L_n decrease \Rightarrow L_m decrease \Rightarrow conduction losses increase
 - Fixed L_n, Q_e decrease \Rightarrow peak gain increase \Rightarrow frequency variation increase
 - Recommend starting with $L_n = 5$, and $Q_e = 0.5$ (from design practice)
Design Considerations

• Resonant circuit design flow

Converter Specifications

\[n = \frac{V_{\text{in}}}{2V_0} \]

Magnetizing Inductance

\[L_m = L_n \times L_r \]

\[L_r = \frac{1}{(2\pi f_{\text{sw}})^2 \times C_r} \]

Resonant Inductor

\[M_g_{\text{max}} = \frac{n \times V_{0_{\text{max}}}}{V_{\text{in max}} / 2} \]

\[M_g_{\text{min}} = \frac{n \times V_{0_{\text{min}}}}{V_{\text{in min}} / 2} \]

Resonant Capacitor

\[C_r = \frac{1}{2\pi f_{\text{sw}} \times R_e \times Q_e} \]

Choose \(L_n \) and \(Q_e \)

Calculate \(R_e \)

\[R_e = \frac{8 \times n^2}{\pi^2} \times R_L = \frac{8 \times n^2}{\pi^2} \times \frac{V_0^2}{P_{\text{out}}} \]

Are Values Within Limits?

\[M_g_{\text{max}} \quad M_g_{\text{min}} \]

\[f_{n_{\text{max}}} \quad f_{n_{\text{min}}} \]

\[Q_e = 0.52 \quad f_{n_{\text{max}}} = 1.02 \]

\[Q_e = 0.47 \quad f_{n_{\text{min}}} = 0.65 \]

\[Q_e = 0.45 \quad M_g_{\text{max}} = 1.3 \]

\[Q_e = 0.5 \quad M_g_{\text{min}} = 0.99 \]

\[f_{n_{\text{min}}} = 0.65 \]

\[L_n = 3.5 \]

\[L_n = 3.0 \]

\[L_n = 2.5 \]

\[L_n = 2.0 \]

\[L_n = 1.5 \]

\[L_n = 1.0 \]

\[L_n = 0.5 \]

\[L_n = 0.0 \]

\[Q_e = 0 \]

\[f_{n_{\text{min}}} = 0.65 \]

\[L_n = 3.5 \] by interpolation

\[M_g_{\text{ap}} = 1.56 \]

\[Q_e = 0.45 \]

\[L_n = 3.0 \]

\[L_n = 2.5 \]

\[L_n = 2.0 \]

\[L_n = 1.5 \]

\[L_n = 1.0 \]

\[L_n = 0.5 \]

\[L_n = 0.0 \]
Design Considerations

• Design example

 – Specifications

 • Rated output power: 300 W
 • Input voltage: 375 to 405 VDC
 • Output voltage: 12 VDC
 • Rated output current: 25 A
 • Efficiency \((V_{\text{in}} = 390 \text{ VDC and } I_{\text{o}} = 25 \text{ A}) \): >90%
 • Switching frequency: 70 kHz to 150 kHz
 • Topology: LLC resonant half-bridge converter
Design Considerations

• Design example
 – Proposed converter circuit block diagram
Design Considerations

• Design example – UCC25600 Features
 - 8-pin SOIC package
 - Programmable:
 • dead time
 • \(f_{\text{min}} \) and \(f_{\text{max}} \)
 • soft start time
 - Protection
 • OCP: hiccup and latch-off
 • VCC UVLO and OVP
 • OTP
 - Burst operation
Design Considerations

- Resonant circuit design flow

Converter Specifications

\[n = \frac{V_{in}}{2V_o} \]

Magnetizing Inductance

\[L_m = L_n \times L_t \]

Resonant Inductor

\[L_t = \frac{1}{(2\pi f_{sw})^2 \times C_r} \]

Resonant Capacitor

\[C_r = \frac{1}{2\pi f_{sw} \times R_c \times Q_c} \]

Choose \(L_n \) and \(Q_e \)

Check \(M_g \) and \(f_n \) Against Graph

Are Values Within Limits?

\[M_{g_{max}} \]
\[f_{n_{max}} = 1.02 \]
\[M_{g_{min}} = 0.99 \]
\[f_{n_{min}} = 0.65 \]

Gain, \(M_g \)

\[Q_e = 0 \]
\[f_{n_{max}} = 0.65 \]
\[M_{g_{max}} = 1.3 \]
\[Q_e = 0.52 \]
\[f_{n_{max}} = 1.02 \]

\(L_n \) = 3.5
\(Q_e = 0.45 \)

\(n = 16 \)

\(L_m = 210 \) \(\mu \)H

\(L_t = 60 \) \(\mu \)H

\(C_r = 27.3 \) nF

\(\frac{8 \times n^2 \times V_o^2}{\pi^2} \times R_c \times Q_c \)

\(\frac{8 \times n^2 \times V_o^2}{\pi^2 \times P_{out}} \)

Texas Instruments—2010 Power Supply Design Seminar 3-28
Design Considerations

- Design check

![Graph showing normalized frequency and gain values with specific points marked for different frequencies and gains.]

- $L_n = 3.5$
- $Q_e = 0$
- $Q_e = 0.47$
- $Q_e = 0.52$
- $M_{g_{\text{max}}} = 1.3$
- $M_{g_{\text{min}}} = 0.99$
- $f_{n_{\text{min}}} = 0.65$ (80.9 kHz)
- $f_{n_{\text{max}}} = 1.02$ (126.9 kHz)
- $f_{n_{\text{max}}} = 1.02$ (126.9 kHz)
- 70 kHz
- 150 kHz
Design Considerations

• Design check
 – Verification with computer-based circuit simulation
 – Design reiteration, if needed
 – Size/select components
 – Build the board
 – Verification with bench tests
 – Re-spin the board/design, if needed
Design Considerations

• Experiment results (L_m = 280 µH, L_r = 60 µH, C_r = 24 nF)
Test Result versus FHA from the Design

- In the vicinity of f_0, FHA-based result very accurate to the final test result ($L_r = 60 \mu H$ and $C_r = 24 \text{nF}$)

- Away from f_0, less accuracy from FHA-based result

- Equation (18)

\[
M_g = \frac{V_{oc}}{V_{ge}} = \frac{jX_{L_m} \parallel R_e}{(jX_{L_m} \parallel R_e) + j(X_L - X_C)} = \frac{(j\omega L_m) \parallel R_e}{(j\omega L_m) \parallel R_e + j\omega L_r + \frac{1}{j\omega C_r}}
\]
Conclusions

• FHA-based method approximately, while effectively, converted complicated LLC resonant-converter circuit to standard AC circuit – greatly simplified its analysis and design

• Method results effective for LLC converter design, especially for initial parameters determination

• Design example with comprehensive design considerations in procedural design steps demonstrating method effectiveness

• Possibility of FHA-based approach for other resonant converters